2024届四川省成都市名校数学九上期末检测模拟试题含解析_第1页
2024届四川省成都市名校数学九上期末检测模拟试题含解析_第2页
2024届四川省成都市名校数学九上期末检测模拟试题含解析_第3页
2024届四川省成都市名校数学九上期末检测模拟试题含解析_第4页
2024届四川省成都市名校数学九上期末检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省成都市名校数学九上期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.一组数据由五个正整数组成,中位数是3,且惟一众数是7,则这五个正整数的平均数是()A.4 B.5 C.6 D.82.设a,b是方程的两个实数根,则的值为A.2014 B.2015 C.2016 D.20173.某细胞的直径约为0.0000008米,该直径用科学记数法表示为()A.米 B.米 C.米 D.米4.已知三地顺次在同-直线上,甲、乙两人均骑车从地出发,向地匀速行驶.甲比乙早出发分钟;甲到达地并休息了分钟后,乙追上了甲.甲、乙同时从地以各自原速继续向地行驶.当乙到达地后,乙立即掉头并提速为原速的倍按原路返回地,而甲也立即提速为原速的二倍继续向地行驶,到达地就停止.若甲、乙间的距离(米)与甲出发的时间(分)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙提速前的速度分别为米/分、米/分.B.两地相距米C.甲从地到地共用时分钟D.当甲到达地时,乙距地米5.下列事件是必然事件的是()A.抛掷一枚硬币四次,有两次正面朝上B.打开电视频道,正在播放《在线体育》C.射击运动员射击一次,命中十环D.方程x2﹣2x﹣1=0必有实数根6.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.图表示的是该电路中电流I与电阻R之间函数关系的图象,则用电阻R表示电流I的函数解析式为()A. B. C. D.7.二次函数的图象如图所示,反比例函数与一次函数在同一平面直角坐标系中的大致图象是A. B. C. D.8.下列立体图形中,主视图是三角形的是(

).A. B. C. D.9.已知线段a是线段b,c的比例中项,则下列式子一定成立的是()A. B. C. D.10.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:在每一个象限内,y值随x值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是()A. B. C. D.二、填空题(每小题3分,共24分)11.己知圆锥的母线长为,底面半径为,则它的侧面积为__________(结果保留).12.菱形的两条对角线分别是,,则菱形的边长为________,面积为________.13.反比例函数的图象具有下列特征:在所在象限内,的值随值增大而减小.那么的取值范围是_____________.14.周末小明到商场购物,付款时想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,则选择“微信”支付方式的概率为____________.15.如图,某试验小组要在长50米,宽39米的矩形试验田中间开辟一横一纵两条等宽的小道,使剩余的面积是1800平方米,求小道的宽.若设小道的宽为米,则所列出的方程是_______(只列方程,不求解)16.当______时,关于的方程有实数根.17.如图所示,半圆O的直径AB=4,以点B为圆心,为半径作弧,交半圆O于点C,交直径AB于点D,则图中阴影部分的面积是_____________.18.已知a+b=0目a≠0,则=_____.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求以C、E、F为顶点三角形与△COD相似时点P的坐标.20.(6分)先化简,再求值:,其中x=sin45°,y=cos60°.21.(6分)如图,在中,,过点作的平行线交的平分线于点,过点作的平行线交于点,交于点,连接,交于点.(1)求证:四边形是菱形;(2)若,,求的长.22.(8分)如图,抛物线y=ax2+bx+2交x轴于点A(-1,0),B(n,0)(点A在点B的左边),交y轴于点C.(1)当n=2时求△ABC的面积.(2)若抛物线的对称轴为直线x=m,当1<n<4时,求m的取值范围.23.(8分)如图,将△ABC绕点B旋转得到△DBE,且A,D,C三点在同一条直线上。求证:DB平分∠ADE.24.(8分)如图,为线段的中点,与交于点,,且交于,交于.(1)证明:.(2)连结,如果,,,求的长.25.(10分)一只不透明的袋子中装有3个黑球、2个白球,每个球除颜色外都相同,从中任意摸出2个球.(1)“其中有1个球是黑球”是事件;(2)求2个球颜色相同的概率.26.(10分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且利润率不得高于50%.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)455055销售量y(千克)11010090(1)求y与x之间的函数表达式,并写出自变量的范围;(2)设每天销售该商品的总利润为W(元),求W与x之间的函数表达式(利润=收入-成本),并求出售价为多少元时每天销售该商品所获得最大利润,最大利润是多少?

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据题意,五个正整数中3是中位数,唯一众数是7,可以得知比3大的有2个数,比3小的有2个数,且7有2个,然后求出这五个数的平均数即可.【题目详解】由五个正整数知,中位数是3说明比3大的有2个数,比3小的有2个数,唯一众数是7,则7有2个,所以这五个正整数分别是1、2、3、7、7,计算平均数是(1+2+3+7+7)÷5=4,故选:A.【题目点拨】本题考查了数据的收集与处理,中位数,众数,平均数的概念以及应用,掌握数据的收集与处理是解题的关键.2、C【题目详解】解:∵a,b是方程x2+x﹣2017=0的两个实数根,∴a+b=﹣1,a2+a﹣2017=0,∴a2=﹣a+2017,∴a2+2a+b=﹣a+2017+2a+b=2017+a+b=2017﹣1=1.故选C.【题目点拨】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,则,.也考查了一元二次方程的解.3、B【分析】根据绝对值小于1的正数也可以利用科学记数法表示,一般形式为且,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:根据科学计数法得:.故选:B.【题目点拨】本题主要考查科学计数法,熟记科学计数法的一般形式是且是关键,注意负指数幂的书写规则是由原数左边第一个不为零的数字开始数起.4、C【分析】设出甲、乙提速前的速度,根据“乙到达B地追上甲”和“甲、乙同时从B出发,到相距900米”建立二元一次方程组求出速度即可判断A,然后根据乙到达C的时间求A、C之间的距离可判断B,根据乙到达C时甲距C的距离及此时速度可计算时间判断C,根据乙从C返回A时的速度和甲到达C时乙从C出发的时间即可计算路程判断出D.【题目详解】A.设甲提速前的速度为米/分,乙提速前的速度为米/分,由图象知,当乙到达B地追上甲时,有:,化简得:,当甲、乙同时从B地出发,甲、乙间的距离为900米时,有:,化简得:,解方程组:,得:,故甲提速前的速度为300米/分,乙提速前的速度为400米/分,故选项A正确;B.由图象知,甲出发23分钟后,乙到达C地,则A、C两地相距为:(米),故选项B正确;C.由图象知,乙到达C地时,甲距C地900米,这时,甲提速为(米/分),则甲到达C地还需要时间为:(分钟),所以,甲从A地到C地共用时为:(分钟),故选项C错误;D.由题意知,乙从C返回A时,速度为:(米/分钟),当甲到达C地时,乙从C出发了2.25分钟,此时,乙距A地距离为:(米),故选项D正确.故选:C.【题目点拨】本题为方程与函数图象的综合应用,正确分析函数图象,明确特殊点的意义是解题的关键.5、D【分析】根据必然事件的定义逐项进行分析即可做出判断,必然事件是一定会发生的事件.【题目详解】A、抛掷一枚硬币,四次中有两次正面朝上是随机事件,故本选项错误;B、打开电视频道,正在播放《在线体育》是随机事件,故本选项错误;C、射击运动员射击一次,命中十环是随机事件,故本选项错误;D.方程中必有实数根,是必然事件,故本选项正确.故选:D.【题目点拨】解决本题要正确理解必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点有:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、C【解题分析】设,那么点(3,2)满足这个函数解析式,∴k=3×2=1.∴.故选C7、B【解题分析】试题分析:∵由二次函数的图象知,a<1,>1,∴b>1.∴由b>1知,反比例函数的图象在一、三象限,排除C、D;由知a<1,一次函数的图象与y国轴的交点在x轴下方,排除A.故选B.8、B【分析】根据从正面看得到的图形是主视图,可得图形的主视图.【题目详解】A、C、D主视图是矩形,故A、C、D不符合题意;B、主视图是三角形,故B正确;故选B.【题目点拨】本题考查了简单几何体的三视图,圆锥的主视图是三角形.9、B【解题分析】根据比例的性质列方程求解即可.解题的关键是掌握比例中项的定义,如果a:b=b:c,即b2=ac,那么b叫做a与c的比例中项.【题目详解】A选项,由得,b2=ac,所以b是a,c的比例中项,不符合题意;B选项,由得a2=bc,所以a是b,c的比例中项,符合题意;C选项,由,得c2=ab,所以c是a,b的比例中项,不符合题意;D选项,由得b2=ac,所以b是a,c的比例中项,不符合题意;故选B.【题目点拨】本题考核知识点:本题主要考查了比例线段.解题关键点:理解比例中项的意义.10、B【解题分析】y=3x的图象经过一三象限过原点的直线,y随x的增大而增大,故选项A错误;y=的图象在一、三象限,在每个象限内y随x的增大而减小,故选项B正确;y=−的图象在二、四象限,故选项C错误;y=x²的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D错误;故选B.二、填空题(每小题3分,共24分)11、【分析】求出圆锥的底面圆周长,利用公式即可求出圆锥的侧面积.【题目详解】解:圆锥的底面圆周长为,则圆锥的侧面积为.故答案为.【题目点拨】本题考查了圆锥的计算,能将圆锥侧面展开是解题的关键,并熟悉相应的计算公式.12、【分析】根据菱形的对角线互相垂直平分求出两对角线的一半,然后利用勾股定理求出菱形的边长,再根据菱形的面积等于对角线乘积的一半求菱形的面积即可.【题目详解】∵菱形的两条对角线长分别为6cm,8cm,∴对角线的一半分别为3cm,4cm,∴根据勾股定理可得菱形的边长为:=5cm,∴面积S=×6×8=14cm1.故答案为5;14.【题目点拨】本题考查了菱形的性质及勾股定理的应用,熟记菱形的性质是解决本题的关键.13、【分析】直接利用当k>1,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<1,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.【题目详解】解:∵反比例函数的图象在所在象限内,y的值随x值的增大而减小,

∴k>1.

故答案为:k>1.【题目点拨】此题主要考查了反比例函数的性质,掌握基本性质是解题的关键.14、【分析】利用概率公式直接写出答案即可.【题目详解】∵共“微信”、“支付宝”、“银行卡”三种支付方式,∴选择“微信”支付方式的概率为,故答案为:.【题目点拨】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15、(答案不唯一)【分析】可设道路的宽为xm,将4块剩余矩形平移为一个长方形,长为(50-x)m,宽为(39-x)m.根据长方形面积公式即可列出方程.【题目详解】解:设道路的宽为xm,依题意有

(50-x)(39-x)=1.

故答案为:.【题目点拨】本题考查由实际问题抽象出一元二次方程的知识,应熟记长方形的面积公式.解题关键是利用平移把4块试验田平移为一个长方形的长和宽.16、【分析】根据题意分关于的方程为一元一次方程和一元二次方程进行分析计算.【题目详解】解:①当关于的方程为一元一次方程时,有,解得,又因为时,方程无解,所以;②当关于的方程为一元二次方程时,根据题意有,解得;综上所述可知:.故答案为:.【题目点拨】本题考查一元二次方程根的判别式,解答此题时要注意关于的方程为一元一次方程的情况.17、【解题分析】解:连接OC,CB,过O作OE⊥BC于E,∴BE=BC==.∵OB=AB=2,∴OE=1,∴∠B=30°,∴∠COA=60°,===.故答案为.18、1【分析】先将分式变形,然后将代入即可.【题目详解】解:,故答案为1【题目点拨】本题考查了分式,熟练将式子进行变形是解题的关键.三、解答题(共66分)19、(1)抛物线的解析式为y=﹣x2﹣2x+1;(2)当△CEF与△COD相似时,P点的坐标为(﹣1,4)或(﹣2,1).【解题分析】(1)根据正切函数,可得OB,根据旋转的性质,可得△DOC≌△AOB,根据待定系数法,可得函数解析式;(2)分两种情况讨论:①当∠CEF=90°时,△CEF∽△COD,此时点P在对称轴上,即点P为抛物线的顶点;②当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于M点,得到△EFC∽△EMP,根据相似三角形的性质,可得PM与ME的关系,解方程,可得t的值,根据自变量与函数值的对应关系,可得答案.【题目详解】(1)在Rt△AOB中,OA=1,tan∠BAO1,∴OB=1OA=1.∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△AOB,∴OC=OB=1,OD=OA=1,∴A,B,C的坐标分别为(1,0),(0,1),(﹣1,0),代入解析式为,解得:,抛物线的解析式为y=﹣x2﹣2x+1;(2)∵抛物线的解析式为y=﹣x2﹣2x+1,∴对称轴为l1,∴E点坐标为(﹣1,0),如图,分两种情况讨论:①当∠CEF=90°时,△CEF∽△COD,此时点P在对称轴上,即点P为抛物线的顶点,P(﹣1,4);②当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于M点,∵∠CFE=∠PME=90°,∠CEF=∠PEM,∴△EFC∽△EMP,∴,∴MP=1ME.∵点P的横坐标为t,∴P(t,﹣t2﹣2t+1).∵P在第二象限,∴PM=﹣t2﹣2t+1,ME=﹣1﹣t,t<0,∴﹣t2﹣2t+1=1(﹣1﹣t),解得:t1=﹣2,t2=1(与t<0矛盾,舍去).当t=﹣2时,y=﹣(﹣2)2﹣2×(﹣2)+1=1,∴P(﹣2,1).综上所述:当△CEF与△COD相似时,P点的坐标为(﹣1,4)或(﹣2,1).【题目点拨】本题是二次函数综合题.解(1)的关键是利用旋转的性质得出OC,OD的长,又利用了待定系数法;解(2)的关键是利用相似三角形的性质得出MP=1ME.20、【分析】利用分式的乘法和除法进行化简,再把x、y的值代入计算,即可得到答案.【题目详解】解:原式==.当x=sin45°=,y=cos60°=时,原式=.【题目点拨】本题考查了特殊角的三角函数值,分式的化简求值,以及分式的混合运算,解题的关键是正确的进行化简,掌握特殊角的三角函数值.21、(1)证明见解析;(2).【分析】(1)根据平行四边形的定义可知四边形是平行四边形,然后根据角平分线的定义和平行线的性质可得,根据等角对等边即可证出,从而证出四边形是菱形;(2)根据菱形的性质和同角的余角相等即可证出,利用锐角三角函数即可求出AH和AG,从而求出GH.【题目详解】(1)证明:,,四边形是平行四边形,平分,,,,,四边形是菱形;(2)解:,,∵四边形是菱形∴,,,,,四边形是菱形,,,,.【题目点拨】此题考查的是菱形的判定及性质、平行线的性质、角平分线的定义、等腰三角形的性质和解直角三角形,掌握菱形的定义及性质、平行线、角平行线和等腰三角形的关系和用锐角三角函数解直角三角形是解决此题的关键.22、(1)3;(2)0<m<.【分析】(1)根据n的值,得到AB的长度,然后求得点C的坐标,进而得到△ABC的面积;(2)根据题意,可以得到,然后用含m的代数式表示n,再根据n的取值范围即可得到m的取值范围.【题目详解】解:(1)如图,连接AC、BC,∵,令x=0,y=2,∴点C的坐标为:(0,2),∵A(-1,0),B(2,0),∴AB=3,OC=2,∴△ABC的面积是:;(2)∵抛物线y=ax2+bx+2交x轴于点A(﹣1,0),B(n,0),对称轴为直线x=m,∵1<n<4,∴,得n=2m+1,∴1<2m+1<4,解得:0<m<.【题目点拨】本题考查了二次函数与坐标轴的交点问题,二次函数的性质,三角形的面积公式,解题的关键是熟练掌握二次函数的性质进行解题.23、证明见解析.【分析】根据旋转的性质得到△ABC≌△DBE,进一步得到BA=BD,从而得到∠A=∠ADB,根据∠A=∠BDE得到∠ADB=∠BDE,从而证得结论.【题目详解】证明:∵将△ABC绕点B旋转得到△DB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论