2024届福建省泉州市泉外、东海、七中学、恒兴四校数学九上期末检测模拟试题含解析_第1页
2024届福建省泉州市泉外、东海、七中学、恒兴四校数学九上期末检测模拟试题含解析_第2页
2024届福建省泉州市泉外、东海、七中学、恒兴四校数学九上期末检测模拟试题含解析_第3页
2024届福建省泉州市泉外、东海、七中学、恒兴四校数学九上期末检测模拟试题含解析_第4页
2024届福建省泉州市泉外、东海、七中学、恒兴四校数学九上期末检测模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省泉州市泉外、东海、七中学、恒兴四校数学九上期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.平面直角坐标系内与点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2) B.(2,3) C.(2,﹣3) D.(﹣3,﹣3)2.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB的值为()A.3 B. C. D.23.平面直角坐标系内一点P(2,-3)关于原点对称点的坐标是()A.(3,-2)B.(2,3)C.(-2,3)D.(2,-3)4.二次根式有意义的条件是()A.x>-1 B.x≥-1 C.x≥1 D.x=-15.如图,AB,AC分别为⊙O的内接正三角形和内接正四边形的一边,若BC恰好是同圆的一个内接正n边形的一边,则n的值为()A.8 B.10 C.12 D.156.如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数上,顶点B在反比例函数上,点C在x轴的正半轴上,则平行四边形OABC的面积是()A. B. C.4 D.67.附城二中到联安镇为5公里,某同学骑车到达,那么时间t与速度(平均速度)v之间的函数关系式是()A.v=5t B.v=t+5 C.v= D.v=8.如图,矩形草坪ABCD中,AD=10m,AB=m.现需要修一条由两个扇环构成的便道HEFG,扇环的圆心分别是B,D.若便道的宽为1m,则这条便道的面积大约是()(精确到0.1m2)A.9.5m2 B.10.0m2 C.10.5m2 D.11.0m29.如图所示,矩形纸片中,,把它分割成正方形纸片和矩形纸片后,分别裁出扇形和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则的长为()A. B. C. D.10.如图,直线分别与⊙相切于,且∥,连接,若,则梯形的面积等于()A.64 B.48 C.36 D.24二、填空题(每小题3分,共24分)11.已知二次函数的顶点为,且经过,将该抛物线沿轴向右平移,当它再次经过点时,所得抛物线的表达式为______.12.如图,AC是⊙O的直径,弦BD⊥AC于点E,连接BC过点O作OF⊥BC于点F,若BD=12cm,AE=4cm,则OF的长度是___cm.13.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是_____.14.若扇形的半径长为3,圆心角为60°,则该扇形的弧长为___.15.如图,直线y=x﹣2与x轴、y轴分别交于点A和点B,点C在直线AB上,且点C的纵坐标为﹣1,点D在反比例函数y=的图象上,CD平行于y轴,S△OCD=,则k的值为________.16.如图,矩形ABCD的边AB上有一点E,ED,EC的中点分别是G,H,AD=4cm,DC=1cm,则△EGH的面积是______cm1.17.已知点A(﹣2,m)、B(2,n)都在抛物线y=x2+2x﹣t上,则m与n的大小关系是m_____n.(填“>”、“<”或“=”)18.如果x:y=1:2,那么=_____.三、解答题(共66分)19.(10分)(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE,求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.20.(6分)在平面直角坐标系中,已知抛物线y=x2﹣2ax+4a+2(a是常数),(Ⅰ)若该抛物线与x轴的一个交点为(﹣1,0),求a的值及该抛物线与x轴另一交点坐标;(Ⅱ)不论a取何实数,该抛物线都经过定点H.①求点H的坐标;②证明点H是所有抛物线顶点中纵坐标最大的点.21.(6分)已知:如图,在四边形ABCD中,AD∥BC,∠C=90°,AB=AD,连接BD,AE⊥BD,垂足为E.(1)求证:△ABE∽△DBC;(2)若AD=25,BC=32,求线段AE的长.22.(8分)2019年国庆档上映了多部优质国产影片,其中《我和我的祖国》、《中国机长》这两部影片不管是剧情还是制作,都非常值得一看.《中国机长》是根据真实故事改编的,影片中全组机组人员以自己的实际行动捍卫安全、呵护生命,堪称是“新时代的英雄”、“民航奇迹的创造者”,据统计,某地10月1日该影片的票房约为1亿,10月3日的票房约为1.96亿.(1)求该地这两天《中国机长》票房的平均增长率;(2)电影《我和我的祖国》、《中国机长》的票价分别为40元、45元,10月份,某企业准备购买200张不同时段的两种电影票,预计总花费不超过8350元,其中《我和我的祖国》的票数不多于《中国机长》票数的2倍,请求出该企业有多少种购买方案,并写出最省钱的方案及所需费用.23.(8分)已知反比例函数y=的图象与一次函数y=kx+m的图象相交于点A(2,1).(1)分别求出这两个函数的解析式;(2)当x取什么范围时,反比例函数值大于0;(3)若一次函数与反比例函数另一交点为B,且纵坐标为﹣4,当x取什么范围时,反比例函数值大于一次函数的值;(4)试判断点P(﹣1,5)关于x轴的对称点P′是否在一次函数y=kx+m的图象上.24.(8分)如图,是的直径,弦于点;点是延长线上一点,,.(1)求证:是的切线;(2)取的中点,连接,若的半径为2,求的长.25.(10分)解方程:2x2﹣5x﹣7=1.26.(10分)在△ABC中,∠ACB=90°,AB=20,BC=1.(1)如图1,折叠△ABC使点A落在AC边上的点D处,折痕交AC、AB分别于Q、H,若则HQ=.(2)如图2,折叠使点A落在BC边上的点M处,折痕交AC、AB分别于E、F.若FM∥AC,求证:四边形AEMF是菱形;(3)在(1)(2)的条件下,线段CQ上是否存在点P,使得和相似?若存在,求出PQ的长;若不存在,请说明理由.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数即可.【题目详解】解:由题意,得

点P(-2,3)关于原点对称的点的坐标是(2,-3),

故选C.【题目点拨】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.2、A【题目详解】解:∵AB=BC,∴∠BAC=∠C.∵∠ABC=120°,∴∠C=∠BAC=10°.∵∠C和∠D是同圆中同弧所对的圆周角,∴∠D=∠C=10°.∵AD为直径,∴∠ABD=90°.∵AD=6,∴AB=AD=1.故选A.3、C【解题分析】略4、C【解题分析】根据二次根式有意义,被开方数为非负数,列不等式求出x的取值范围即可.【题目详解】∵二次根式有意义,∴x-1≥0,∴x≥1,故选:C.【题目点拨】本题考查二次根式有意义的条件,要使二次根式有意义,被开方数为非负数;熟练掌握二次根式有意义的条件是解题关键.5、C【分析】根据图形求出正多边形的中心角,再由正多边形的中心角和边的关系:,即可求得.【题目详解】连接OA、OB、OC,如图,∵AC,AB分别为⊙O的内接正四边形与内接正三角形的一边,∴∠AOC==90°,∠AOB==120°,∴∠BOC=∠AOB﹣∠AOC=30°,∴n==12,即BC恰好是同圆内接一个正十二边形的一边.故选:C.【题目点拨】本题考查正多边形的中心角和边的关系,属基础题.6、C【分析】作BD⊥x轴于D,延长BA交y轴于E,然后根据平行四边形的性质和反比例函数系数k的几何意义即可求得答案.【题目详解】解:如图作BD⊥x轴于D,延长BA交y轴于E,∵四边形OABC是平行四边形,∴AB∥OC,OA=BC,∴BE⊥y轴,∴OE=BD,∴Rt△AOE≌Rt△CBD(HL),根据反比例函数系数k的几何意义得,S矩形BDOE=5,S△AOE=,∴平行四边形OABC的面积,故选:C.【题目点拨】本题考查了反比例函数的比例系数k的几何意义、平行四边形的性质等,有一定的综合性7、C【分析】根据速度=路程÷时间即可写出时间t与速度(平均速度)v之间的函数关系式.【题目详解】∵速度=路程÷时间,∴v=.故选C.【题目点拨】此题主要考查反比例函数的定义,解题的关键是熟知速度路程的公式.8、C【分析】由四边形ABCD为矩形得到△ADB为直角三角形,又由AD=10,AB=10,由此利用勾股定理求出BD=20,又由cos∠ADB=,得到∠ADB=60°,又矩形对角线互相平分且相等,便道的宽为1m,所以每个扇环都是圆心角为30°且外环半径为10.1,内环半径为9.1.这样可以求出每个扇环的面积.【题目详解】∵四边形ABCD为矩形,∴△ADB为直角三角形,又∵AD=10,AB=,∴BD=,又∵cos∠ADB=,∴∠ADB=60°.又矩形对角线互相平分且相等,便道的宽为1m,所以每个扇环都是圆心角为30°,且外环半径为10.1,内环半径为9.1.∴每个扇环的面积为.∴当π取3.14时整条便道面积为×2=10.4666≈10.1m2.便道面积约为10.1m2.故选:C.【题目点拨】此题考查内容比较多,有勾股定理、三角函数、扇形面积,做题的关键是把实际问题转化为数学问题.9、B【分析】设AB=xcm,则DE=(6-x)cm,根据扇形的弧长等于圆锥底面圆的周长列出方程,求解即可.【题目详解】设,则DE=(6-x)cm,由题意,得,解得.故选B.【题目点拨】本题考查了圆锥的计算,矩形的性质,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.10、B【分析】先根据切线长定理得出,然后利用面积求出OF的长度,即可得到圆的半径,最后利用梯形的面积公式即可求出梯形的面积.【题目详解】连接OF,∵直线分别与⊙相切于,∴.在和中,∴,∴.在和中,∴,∴.∵,.∵,.,∴,,∴梯形的面积为.故选:B.【题目点拨】本题主要考查切线的性质,切线长定理,梯形的面积公式,掌握切线的性质和切线长定理是解题的关键.二、填空题(每小题3分,共24分)11、或【分析】由二次函数解析式的顶点式写出二次函数坐标为,将点P坐标代入二次函数解析式,求出a的值,如图,抛物线向右平移再次经过点P,即点P的对称点点Q与点P重合,向右移动了4个单位,写出抛物线解析式即可.【题目详解】由顶点坐标(0,0)可设二次函数解析式为,将P(2,2)代入解析式可得a=,所以,如图,图像上,点P的对称点为点Q(-2,2),当点Q与点P重合时,向右移动了4个单位,所以抛物线解析式为或.故答案为或.【题目点拨】本题主要考查二次函数顶点式求解析式、二次函数的图像和性质以及二次函数的平移,本题关键在于根据题意确定出向右平移的单位.12、.【分析】连接OB,根据垂径定理和勾股定理即可求出OB,从而求出EC,再根据勾股定理即可求出BC,根据三线合一即可求出BF,最后再利用勾股定理即可求出OF.【题目详解】连接OB,∵AC是⊙O的直径,弦BD⊥AC,∴BE=BD=6cm,在Rt△OEB中,OB2=OE2+BE2,即OB2=(OB﹣4)2+62,解得:OB=,∴AC=2OA=2OB=13cm则EC=AC﹣AE=9cm,BC===3cm,∵OF⊥BC,OB=OC∴BF=BC=cm,∴OF===cm,故答案为.【题目点拨】此题考查的是垂径定理和勾股定理,掌握垂径定理和勾股定理的结合是解决此题的关键.13、8﹣π【解题分析】分析:如下图,过点D作DH⊥AE于点H,由此可得∠DHE=∠AOB=90°,由旋转的性质易得DE=EF=AB,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,结合∠ABO+∠BAO=90°可得∠BAO=∠DEH,从而可证得△DEH≌△BAO,即可得到DH=BO=2,再由勾股定理求得AB的长,即可由S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF即可求得阴影部分的面积.详解:如下图,过点D作DH⊥AE于点H,∴∠DHE=∠AOB=90°,∵OA=3,OB=2,∴AB=,由旋转的性质结合已知条件易得:DE=EF=AB=,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,又∵∠ABO+∠BAO=90°,∴∠BAO=∠DEH,∴△DEH≌△BAO,∴DH=BO=2,∴S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF==.故答案为:.点睛:作出如图所示的辅助线,利用旋转的性质证得△DEH≌△BAO,由此得到DH=BO=2,从而将阴影部分的面积转化为:S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF来计算是解答本题的关键.14、【分析】根据弧长的公式列式计算即可.【题目详解】∵一个扇形的半径长为3,且圆心角为60°,

∴此扇形的弧长为=π.

故答案为:π.【题目点拨】此题考查弧长公式,熟记公式是解题关键.15、1【题目详解】试题分析:把x=2代入y=x﹣2求出C的纵坐标,得出OM=2,CM=1,根据CD∥y轴得出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D的坐标代入反比例函数的解析式求出k即可.解:∵点C在直线AB上,即在直线y=x﹣2上,C的横坐标是2,∴代入得:y=×2﹣2=﹣1,即C(2,﹣1),∴OM=2,∵CD∥y轴,S△OCD=,∴CD×OM=,∴CD=,∴MD=﹣1=,即D的坐标是(2,),∵D在双曲线y=上,∴代入得:k=2×=1.故答案为1.考点:反比例函数与一次函数的交点问题.点评:本题考查了反比例函数与一次函数的交点问题、一次函数、反比例函数的图象上点的坐标特征、三角形的面积等知识点,通过做此题培养了学生的计算能力和理解能力,题目具有一定的代表性,是一道比较好的题目.16、2【分析】由题意利用中位线的性质得出,进而根据相似三角形性质得出,利用三角形面积公式以及矩形性质分析计算得出△EGH的面积.【题目详解】解:∵ED,EC的中点分别是G,H,∴GH是△EDC的中位线,∴,,∵AD=4cm,DC=2cm,∴,∴.故答案为:2.【题目点拨】本题考查相似三角形的性质以及矩形性质,熟练掌握相似三角形的面积比是线段比的平方比以及中位线的性质和三角形面积公式以及矩形性质是解题的关键.17、<【解题分析】根据二次函数的性质得到抛物线y=x2+2x-t的开口向上,有最小值为-t-1,对称轴为直线x=-1,则在对称轴左侧,y随x的增大而减小,在对称轴右侧,y随x的增大而增大,进而解答即可.【题目详解】∵y=x2+2x-t=(x+1)2-t-1,∴a=1>0,有最小值为-t-1,∴抛物线开口向上,∵抛物线y=x2+2x-t对称轴为直线x=-1,∵-2<0<2,∴m<n.故答案为:<18、【分析】根据合比性质,可得答案.【题目详解】解:,即.故答案为.【题目点拨】考查了比例的性质,利用了和比性质:.三、解答题(共66分)19、(1)证明见解析;(2)证明见解析;(3)1.【分析】(1)根据正方形的性质,可直接证明△CBE≌△CDF,从而得出CE=CF;(2)延长AD至F,使DF=BE,连接CF,根据(1)知∠BCE=∠DCF,即可证明∠ECF=∠BCD=90°,根据∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;(3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解.【题目详解】(1)如图1,在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF,∴CE=CF;(2)如图,延长AD至F,使DF=BE,连接CF,由(1)知△CBE≌△CDF,∴∠BCE=∠DCF,∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°,∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG,∴GE=GF,∴GE=DF+GD=BE+GD;(3)如图:过点C作CF⊥AD于F,∵AD∥BC,∠B=90°,∴∠A=90°,

∵∠A=∠B=90°,FC⊥AD,∴四边形ABCF是矩形,且AB=BC=12,∴四边形ABCF是正方形,∴AF=12,由(2)可得DE=DF+BE,∴DE=4+DF,在△ADE中,AE2+DA2=DE2,∴(12−4)2+(12−DF)2=(4+DF)2,∴DF=6,∴AD=6,∴S四边形ABCD=(AD+BC)×AB=×(6+12)×12=1.【题目点拨】本题考查了全等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线.20、(Ⅰ)a=﹣,抛物线与x轴另一交点坐标是(0,0);(Ⅱ)①点H的坐标为(2,6);②证明见解析.【分析】(I)根据该抛物线与x轴的一个交点为(-1,0),可以求得的值及该抛物线与x轴另一交点坐标;(II)①根据题目中的函数解析式可以求得点H的坐标;②将题目中的函数解析式化为顶点式,然后根据二次函数的性质即可证明点H是所有抛物线顶点中纵坐标最大的点.【题目详解】(Ⅰ)∵抛物线y=x2﹣2ax+4a+2与x轴的一个交点为(﹣1,0),∴0=(﹣1)2﹣2a×(﹣1)+4a+2,解得,a=﹣,∴y=x2+x=x(x+1),当y=0时,得x1=0,x2=﹣1,即抛物线与x轴另一交点坐标是(0,0);(Ⅱ)①∵抛物线y=x2﹣2ax+4a+2=x2+2﹣2a(x﹣2),∴不论a取何实数,该抛物线都经过定点(2,6),即点H的坐标为(2,6);②证明:∵抛物线y=x2﹣2ax+4a+2=(x﹣a)2﹣(a﹣2)2+6,∴该抛物线的顶点坐标为(a,﹣(a﹣2)2+6),则当a=2时,﹣(a﹣2)2+6取得最大值6,即点H是所有抛物线顶点中纵坐标最大的点.【题目点拨】本题考查抛物线与x轴的交点、二次函数的性质、二次函数的最值、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.21、(1)证明见解析;(2)1【分析】(1)由等腰三角形的性质可知∠ABD=∠ADB,由AD∥BC可知,∠ADB=∠DBC,由此可得∠ABD=∠DBC,又因为∠AEB=∠C=90°,所以可证△ABE∽△DBC;

(2)由等腰三角形的性质可知,BD=2BE,根据△ABE∽△DBC,利用相似比求BE,在Rt△ABE中,利用勾股定理求AE即可.【题目详解】(1)证明:∵AB=AD=25,

∴∠ABD=∠ADB,

∵AD∥BC,

∴∠ADB=∠DBC,

∴∠ABD=∠DBC,

∵AE⊥BD,

∴∠AEB=∠C=90°,

∴△ABE∽△DBC;

(2)解:∵AB=AD,又AE⊥BD,

∴BE=DE,

∴BD=2BE,

由△ABE∽△DBC,

得,

∵AB=AD=25,BC=32,

∴,

∴BE=20,

∴AE==1.【题目点拨】此题考查相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质及勾股定理解题.22、(1)该地这两天《中国机长》票房的平均增长率为40%;(2)最省钱的方案为购买《我和我的祖国》133张,《中国机长》67张,所需费用为8335元【分析】(1)根据题意列出增长率的方程解出即可.(2)根据题意列出不等式组,解出a的正整数值,再根据方案判断即可.【题目详解】(1)设该地这两天《中国机长》票房的平均增长率为x.根据题意得:1×(1+x)2=1.96解得:x1=0.4,x2=﹣2.4(舍)答:该地这两天《中国机长》票房的平均增长率为40%.(2)设购买《我和我的祖国》a张,则购买《中国机长》(200﹣a)张根据题意得:解得:130≤a≤∵a为正整数∴a=130,131,132,133∴该企业共有4种购买方案,购买《我和我的祖国》133张,《中国机长》67张时最省钱,费用为:40×133+45×67=8335(元).答:最省钱的方案为购买《我和我的祖国》133张,《中国机长》67张,所需费用为8335元.【题目点拨】本题考查一元二次方程的应用、不等式组的应用,关键在于理解题意列出方程.23、(1)y=,y=2x﹣3;(2)x>1;(3)x<﹣1.5或1<x<2;(4)点P′在直线上.【题目详解】试题分析:(1)根据题意,反比例函数y=的图象过点A(2,1),可求得k的值,进而可得解析式;一次函数y=kx+m的图象过点A(2,1),代入求得m的值,从而得出一次函数的解析式;(2)根据(1)中求得的解析式,当y>1时,解得对应x的取值即可;(3)由题意可知,反比例函数值大于一次函数的值,即可得>2x﹣3,解得x的取值范围即可;(4)先根据题意求出P′的坐标,再代入一次函数的解析式即可判断P′是否在一次函数y=kx+m的图象上..试题解析:解:(1)根据题意,反比例函数y=的图象与一次函数y=kx+m的图象相交于点A(2,1),则反比例函数y=中有k=2×1=2,y=kx+m中,k=2,又∵过(2,1),解可得m=﹣3;故其解析式为y=,y=2x﹣3;(2)由(1)可得反比例函数的解析式为y=,令y>1,即>1,解可得x>1.(3)根据题意,要反比例函数值大于一次函数的值,即>2x﹣3,解可得x<﹣1.5或1<x<2.(4)根据题意,易得点P(﹣1,5)关于x轴的对称点P′的坐标为(﹣1,﹣5)在y=2x﹣3中,x=﹣1时,y=﹣5;故点P′在直线上.考点:反比例函数与一次函数的交点问题.24、(1)见解析(2)【分析】(1)连接OE,OF,由垂径定理和圆周角定理得到∠DOF=∠DOE.而∠DOE=2∠A,得出∠DOF=2∠A,证出∠OFD=90°.即可得出结论;(2)连接OM,由垂径定理和勾股定理进行计算即可.【题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论