2024届江苏省扬州市翠岗中学数学九上期末经典试题含解析_第1页
2024届江苏省扬州市翠岗中学数学九上期末经典试题含解析_第2页
2024届江苏省扬州市翠岗中学数学九上期末经典试题含解析_第3页
2024届江苏省扬州市翠岗中学数学九上期末经典试题含解析_第4页
2024届江苏省扬州市翠岗中学数学九上期末经典试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省扬州市翠岗中学数学九上期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.12.已知,则等于()A.2 B.3 C. D.3.如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为上一点(不与O、A两点重合),则cosC的值为()A. B. C. D.4.如图,已知直线与轴交于点,与轴交于点,将沿直线翻折后,设点的对应点为点,双曲线经过点,则的值为()A.8 B.6 C. D.5.函数y=与y=kx+k(k为常数且k≠0)在同一平面直角坐标系中的图象可能是()A. B. C. D.6.下列图形中,不是中心对称图形的是()A. B. C. D.7.关于的分式方程的解为非负整数,且一次函数的图象不经过第三象限,则满足条件的所有整数的和为()A. B. C. D.8.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0 B.+x=2 C.x2+2x=x2﹣1 D.3x2+1=2x+29.一个不透明的盒子有n个除颜色外其它完全相同的小球,其中有12个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20 B.30 C.40 D.5010.在阳光的照射下,一块三角板的投影不会是()A.线段 B.与原三角形全等的三角形C.变形的三角形 D.点11.如图,是由绕点顺时针旋转后得到的图形,若点恰好落在上,且的度数为()A. B. C. D.12.用配方法解一元二次方程时,此方程可变形为()A. B. C. D.二、填空题(每题4分,共24分)13.定义为函数的“特征数”如:函数的“特征数”是,函数的“特征数”是,在平面直角坐标系中,将“特征数”是的函数的图象向下平移3个单位,再向右平移1个单位,得到一个新函数,这个新函数的“特征数”是_______.14.如图,等腰△ABC中,∠A=36°,AB=AC,BD平分∠ABC交AC于点D,则的值等于_____.15.计算:cos45°=________________16.如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn=_____.17.关于的方程的一个根为2,则______.18.一个反比例函数的图像过点,则这个反比例函数的表达式为__________.三、解答题(共78分)19.(8分)下面是小东设计的“过圆外一点作这个圆的两条切线”的尺规作图过程.已知:⊙O及⊙O外一点P.求作:直线PA和直线PB,使PA切⊙O于点A,PB切⊙O于点B.作法:如图,①连接OP,分别以点O和点P为圆心,大于OP的同样长为半径作弧,两弧分别交于点M,N;②连接MN,交OP于点Q,再以点Q为圆心,OQ的长为半径作弧,交⊙O于点A和点B;③作直线PA和直线PB.所以直线PA和PB就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵OP是⊙Q的直径,∴∠OAP=∠OBP=________°()(填推理的依据).∴PA⊥OA,PB⊥OB.∵OA,OB为⊙O的半径,∴PA,PB是⊙O的切线.20.(8分)如图所示,在平面直角坐标系中,抛物线与轴相交于点,点,与轴相交于点,与抛物线的对称轴相交于点.(1)求该抛物线的表达式,并直接写出点的坐标;(2)过点作交抛物线于点,求点的坐标;(3)在(2)的条件下,点在射线上,若与相似,求点的坐标.21.(8分)计算:(1);(2)解方程:.22.(10分)如图,点B、D、E在一条直线上,BE交AC于点F,,且∠BAD=∠CAE.(1)求证:△ABC∽△ADE;(2)求证:△AEF∽△BFC.23.(10分)如图,CD为⊙O的直径,弦AB交CD于点E,连接BD、OB.(1)求证:△AEC∽△DEB;(2)若CD⊥AB,AB=6,DE=1,求⊙O的半径长.24.(10分)如图,在中,∠C=90°,AC=3,AB=5,点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE始终保持垂直平分PQ,且交PQ于点D,交BC于点E.点P、Q同时出发,当点P到达点A时停止运动,点Q也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t为何值时,?(2)求四边形BQPC的面积S与t的函数关系式;(3)是否存在某一时刻t,使四边形BQPC的面积与的面积比为13:15?若存在,求t的值.若不存在,请说明理由;(4)若DE经过点C,试求t的值.25.(12分)有一个人患了流感,经过两轮传染后共有196个人患了流感,每轮传染中平均一个人传染了几个人?26.已知,在平行四边形OABC中,OA=5,AB=4,∠OCA=90°,动点P从O点出发沿射线OA方向以每秒2个单位的速度移动,同时动点Q从A点出发沿射线AB方向以每秒1个单位的速度移动.设移动的时间为t秒.(1)求直线AC的解析式;(2)试求出当t为何值时,△OAC与△PAQ相似.

参考答案一、选择题(每题4分,共48分)1、B【解题分析】先根据反比例函数图象上点的坐标特征及A,B两点的横坐标,求出A(1,1),B(4,1).再过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,根据反比例函数系数k的几何意义得出S△AOC=S△BOD=×4=1.根据S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,得出S△AOB=S梯形ABDC,利用梯形面积公式求出S梯形ABDC=(BD+AC)•CD=×(1+1)×1=2,从而得出S△AOB=2.【题目详解】∵A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是1和4,∴当x=1时,y=1,即A(1,1),当x=4时,y=1,即B(4,1),如图,过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,则S△AOC=S△BOD=×4=1,∵S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,∴S△AOB=S梯形ABDC,∵S梯形ABDC=(BD+AC)•CD=×(1+1)×1=2,∴S△AOB=2,故选B.【题目点拨】本题考查了反比例函数中k的几何意义,反比例函数图象上点的坐标特征,梯形的面积,熟知反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S与k的关系为S=|k|是解题的关键.2、D【题目详解】∵2x=3y,∴.故选D.3、D【题目详解】如图,连接AB,由圆周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴.故选D.4、A【分析】作轴于,轴于,设.依据直线的解析式即可得到点和点的坐标,进而得出,,再根据勾股定理即可得到,进而得出,即可得到的值.【题目详解】解:作轴于,轴于,如图,设,当时,,则,当时,,解得,则,∵沿直线翻折后,点的对应点为点,∴,,在中,,①在中,,②①-②得,把代入①得,解得,∴,∴,∴.故选A.【题目点拨】此题考查反比例函数图象上点的坐标特征,解题关键在于掌握反比例函数(为常数,)的图象是双曲线,图象上的点的横纵坐标的积是定值,即.5、A【解题分析】当k>0时,双曲线y=的两支分别位于一、三象限,直线y=kx+k的图象过一、二、三象限;当k<0时,双曲线y=的两支分别位于二、四象限,直线y=kx+k的图象过二、三、四象限;由此可得,只有选项A符合要求,故选A.点睛:本题考查一次函数,反比例函数中系数及常数项与图象位置之间关系.反比例函数y=的图象当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.一次函数图象与k、b的关系:①k>0,b>0时,图像经过一二三象限;②k>0,b<0,图像经过一三四象限;③k>0,b=0时,图像经过一三象限,并过原点;④k<0,b>0时,图像经过一二四象限;⑤k<0,b<0时,图像经过二三四象限;⑥k<0,b=0时,图像经过二四象限,并过原点.6、A【题目详解】解:根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、不是中心对称图形,故本选项正确;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误.故选A.7、A【分析】解分式方程可得且,再根据一次函数的图象不经过第三象限,可得,结合可得,且,再根据是整数和是非负整数求出的所有值,即可求解.【题目详解】经检验,不是方程的解∴∵分式方程的解为非负整数∴解得且∵一次函数的图象不经过第三象限∴解得∴,且∵是整数∴∵是非负整数故答案为:A.【题目点拨】本题考查了分式方程和一次函数的问题,掌握解分式方程和解不等式组的方法是解题的关键.8、D【解题分析】试题分析:一元二次方程的一般式为:a+bx+c=0(a、b、c为常数,且a≠0),根据定义可得:A选项中a有可能为0,B选项中含有分式,C选项中经过化简后不含二次项,D为一元二次方程.考点:一元二次方程的定义9、C【分析】根据利用频率估计概率得到摸到黄球的概率为30%,然后根据概率公式计算n的值即可.【题目详解】根据题意得:,解得n=40,所以估计盒子中小球的个数为40个.故选C.【题目点拨】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,概率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.10、D【分析】将一个三角板放在太阳光下,当它与阳光平行时,它所形成的投影是一条线段;当它与阳光成一定角度但不垂直时,它所形成的投影是三角形.【题目详解】解:根据太阳高度角不同,所形成的投影也不同.当三角板与阳光平行时,所形成的投影为一条线段;当它与阳光形成一定角度但不垂直时,它所形成的投影是三角形,不可能是一个点,故选D.【题目点拨】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应视其外在形状,及其与光线的夹角而定.11、C【分析】由旋转的性质知∠AOD=30°、OA=OD,根据等腰三角形的性质及内角和定理可得答案.【题目详解】解:由题意得,,∴.故选:C.【题目点拨】本题主要考查旋转的性质,熟练掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等是解题的关键.12、D【解题分析】试题解析:故选D.二、填空题(每题4分,共24分)13、【分析】首先根据“特征数”得出函数解析式,然后利用平移规律得出新函数解析式,化为一般式即可判定其“特征数”.【题目详解】由题意,得“特征数”是的函数的解析式为,平移后的新函数解析式为∴这个新函数的“特征数”是故答案为:【题目点拨】此题主要考查新定义下的二次函数的平移,解题关键是理解题意.14、【分析】先证△ABC和△BDC都是顶角为36°的等腰三角形,然后证明△BDC∽△ABC,根据相似三角形的性质即可得出结论.【题目详解】∵在△ABC中,∠A=36°,AB=AC,∴∠ABC=∠ACB=72°.∵BD平分∠ABC,∴∠DBC=∠ABD=36°,∴AD=BD,∴∠BDC=72°,∴BD=BC,∴△ABC和△BDC都是顶角为36°的等腰三角形.设CD=x,AD=y,∴BC=BD=y.∵∠C=∠C,∠DBC=∠A=36°,∴△BDC∽△ABC,∴,∴,∴,解得:(负数舍去),∴.故答案为:.【题目点拨】本题考查了相似三角形的判定与性质以及等腰三角形的性质,掌握相似三角形的判定与性质是解答本题的关键.15、1【分析】将cos45°=代入进行计算即可.【题目详解】解:cos45°=故答案为:1.【题目点拨】此题考查的是特殊角的锐角三角函数值,掌握cos45°=是解决此题的关键.16、1【解题分析】点B是抛物线y=﹣x2+4x+2的顶点,∴点B的坐标为(2,6),2018÷6=336…2,故点P离x轴的距离与点B离x轴的距离相同,∴点P的坐标为(2018,6),∴m=6;点B(2,6)在的图象上,∴k=6;即,2025÷6=337…3,故点Q离x轴的距离与当x=3时,函数的函数值相等,又x=3时,,∴点Q的坐标为(2025,4),即n=4,∴=故答案为1.【题目点拨】本题主要考查了反比例函数图象上的点的坐标特征以及二次函数的图象与性质.本题是一道找规律问题.找到点P、Q在A﹣B﹣C段上的对应点是解题的关键.17、1【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k的方程,从而求得k的值.【题目详解】把x=2代入方程得:4k−2−2=0,解得k=1故答案为:1.【题目点拨】本题主要考查了方程的根的定义,是一个基础的题目.18、【分析】设反比例函数的解析式为y=(k≠0),把A点坐标代入可求出k值,即可得答案.【题目详解】设反比例函数的解析式为y=(k≠0),∵反比例函数的图像过点,∴3=,解得:k=-6,∴这个反比例函数的表达式为,故答案为:【题目点拨】本题考查待定系数法求反比例函数解析式,熟练掌握反比例函数图象上的点的坐标特征是解题关键.三、解答题(共78分)19、(1)补全图形见解析;(2)90;直径所对的圆周角是直角.【分析】(1)根据题中得方法依次作图即可;(2)直径所对的圆周角是直角,据此填写即可.【题目详解】(1)补全图形如图(2)∵直径所对的圆周角是直角,∴∠OAP=∠OBP=90°,故答案为:90;直径所对的圆周角是直角,【题目点拨】本题主要考查了尺规作图以及圆周角性质,熟练掌握相关方法是解题关键.20、(1),点;(2)点;(3)或【解题分析】(1)设抛物线的表达式为,将A、B、C三点坐标代入表达式,解出a、b、c的值即可得到抛物线表达式,同理采用待定系数法求出直线BC解析式,即可求出与对称轴的交点坐标;(2)过点E作EH⊥AB,垂足为H.先证∠EAH=∠ACO,则tan∠EAH=tan∠ACO=,设EH=t,则AH=2t,从而可得到E(-2+2t,t),最后,将点E的坐标代入抛物线的解析式求解即可;(3)先证明,再根据与相似分两种情况讨论,建立方程求出AF,利用三角函数即可求出F点的坐标.【题目详解】(1)设抛物线的表达式为.把,和代入得,解得,抛物线的表达式,∴抛物线对称轴为设直线BC解析式为,把和代入得,解得∴直线BC解析式为当时,点.(2)如图,过点E作EH⊥AB,垂足为H.∵∠EAB+∠BAC=90°,∠BAC+∠ACO=90°,∴∠EAH=∠ACO.∴tan∠EAH=tan∠ACO=.设EH=t,则AH=2t,∴点E的坐标为(−2+2t,t).将(−2+2t,t)代入抛物线的解析式得:12(−2+2t)2−(−2+2t)−4=t,解得:t=或t=0(舍去)∴(3)如图所示,,.,,.由(2)中tan∠EAH=tan∠ACO可知,.和相似,分两种情况讨论:①,即,,∵tan∠EAB=∴sin∠EAB=∴F点的纵坐标=点.②,即,,同①可得F点纵坐标=横坐标=点.综合①②,点或.【题目点拨】本题考查二次函数的综合问题,需要熟练掌握待定系数法求函数解析式,熟练运用三角函数与相似三角形的性质,作出图形,数形结合是解题的关键.21、(1)6;(2)x1=1,x2=2【分析】(1)根据负整数指数幂,特殊角的三角函数值以及零次幂的相关知识求解即可;(2)用分解因式的方法求解即可.【题目详解】解:(1)原式==4+3-1=6(2)将原方程因式分解可得:(x-1)(x-2)=0,即x-1=0或x-2=0解得,x=1或x=2,所以方程的解为:,.【题目点拨】本题考查的知识点是实数的运算以及解一元二次方程,掌握负整数指数幂、零次幂、特殊角的三角函数值以及解一元二次方程的方法等知识点是解此题的关键.22、(1)见解析;(2)见解析【分析】(1)由已知先证明∠BAC=∠DAE,继而根据两边对应成比例且夹角相等即可得结论;(2)根据相似三角形的性质定理得到∠C=∠E,结合图形,证明即可.【题目详解】证明:如图,(1)∵∠BAD=∠CAE∴∠BAD+∠CAD=∠CAE+∠CAD即∠BAC=∠DAE在△ABC和△ADE中,∠BAC=∠DAE,∴△ABC∽△ADE;(2)∵△ABC∽△ADE,∴∠C=∠E,在△AEF和△BFC中,∠C=∠E,∠AFE=∠BFC,∴△AEF∽△BFC.【题目点拨】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.23、(1)见解析;(2)⊙O的半径为1.【分析】(1)根据圆周角定理即可得出∠A=∠D,∠C=∠ABD,从而可求证△AEC∽△DEB;

(2)由垂径定理可知BE=3,设半径为r,由勾股定理可列出方程求出r.【题目详解】解:(1)根据“同弧所对的圆周角相等”,

得∠A=∠D,∠C=∠ABD,

∴△AEC∽△DEB

(2)∵CD⊥AB,O为圆心,

∴BE=AB=3,

设⊙O的半径为r,

∵DE=1,则OE=r−1,

在Rt△OEB中,

由勾股定理得:OE2+EB2=OB2,

即:(r−1)2+32=r2,

解得r=1,即⊙O的半径为1.【题目点拨】本题考查圆的综合问题,涉及相似三角形的判定与性质,勾股定理,垂径定理等知识,综合程度较高,需要灵活运用所学知识.24、(1);(2);(3)1或2;(4).【分析】(1)先根据可得,再根据相似三角形的判定可得,然后利用相似三角形的性质即可得;(2)如图(见解析),先利用正弦三角函数求出的长,再根据即可得与的函数关系式,然后根据运动路程和速度求出的取值范围即可得;(3)先根据面积比可求出S的值,从而可得一个关于t的一元二次方程,再解方程即可得;(4)如图(见解析),先根据相似三角形的判定与性质可得,从而可得,再根据线段的和差可得,然后根据垂直平分线的性质可得,最后在中,利用勾股定理即可得.【题目详解】(1)由题意得:,,,,DE垂直平分PQ,,即,在和中,,,,即,解得,故当时,;(2)如图,过点Q作于点F,在中,,,在中,,即,解得,则四边形BQPC的面积,,,点P到达点A所需时间为(秒),点Q到达点B所需时间为(秒),且当点P到达点A时停止运动

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论