内蒙古巴彦淖尔市杭锦全旗2024届九年级数学第一学期期末教学质量检测试题含解析_第1页
内蒙古巴彦淖尔市杭锦全旗2024届九年级数学第一学期期末教学质量检测试题含解析_第2页
内蒙古巴彦淖尔市杭锦全旗2024届九年级数学第一学期期末教学质量检测试题含解析_第3页
内蒙古巴彦淖尔市杭锦全旗2024届九年级数学第一学期期末教学质量检测试题含解析_第4页
内蒙古巴彦淖尔市杭锦全旗2024届九年级数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古巴彦淖尔市杭锦全旗2024届九年级数学第一学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图反比例函数()与正比例函数()相交于两点A,B.若点A(1,2),B坐标是()A.(,) B.(,) C.(,) D.(,)2.向阳村年的人均收入为万元,年的人均收入为万元.设年平均增长率为,根据题意,可列出方程为()A. B. C. D.3.如图,△ABC中,点D,E在边AB,AC上,DE∥BC,△ADE与△ABC的周长比为2∶5,则AD∶DB为()A.2∶5 B.4∶25 C.2∶3 D.5∶24.如图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O交斜边BC于D,则阴影部分面积为(结果保留π)()A.24﹣4π B.32﹣4π C.32﹣8π D.165.下列对二次函数的图象的描述,正确的是()A.开口向下 B.对称轴是轴C.当时,有最小值是 D.在对称轴左侧随的增大而增大6.如图,在△ABC中,AB=18,BC=15,cosB=,DE∥AB,EF⊥AB,若=,则BE长为()A.7.5 B.9 C.10 D.57.如图,在△ABC中,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM、PN、MN,则下列结论:①PM=PN;②;③若∠ABC=60°,则△PMN为等边三角形;④若∠ABC=45°,则BN=PC.其中正确的是()A.①②③ B.①②④ C.①③④ D.②③④8.如图,AB是⊙O的直径,C,D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于点E,则sinE的值为()A. B. C. D.9.二次函数的部分图象如图所示,由图象可知方程的根是()A. B.C. D.10.如图,一个几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为()A. B. C. D.11.如图,在5×6的方格纸中,画有格点△EFG,下列选项中的格点,与E,G两点构成的三角形中和△EFG相似的是()A.点A B.点B C.点C D.点D12.点A(﹣5,4)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(每题4分,共24分)13.一个几何体的三视图如图所示,根据图中数据,计算出该几何体的表面积是__________.14.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为_____.15.方程x2﹣4x﹣6=0的两根和等于_____,两根积等于_____.16.一支反比例函数,若,则y的取值范围是_____.17.如图,已知公路L上A,B两点之间的距离为100米,小明要测量点C与河对岸的公路L的距离,在A处测得点C在北偏东60°方向,在B处测得点C在北偏东30°方向,则点C到公路L的距离CD为_____米.18.如图,已知⊙O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP=_____.三、解答题(共78分)19.(8分)在平面直角坐标系中,直线交轴于点,交轴于点,,点的坐标是.(1)如图1,求直线的解析式;(2)如图2,点在第一象限内,连接,过点作交延长线于点,且,过点作轴于点,连接,设点的横坐标为,的而积为S,求S与的函数关系式(不要求写出自变量的取值范围);(3)如图3,在(2)的条件下,过点作轴,连接、,若,时,求的值.20.(8分)如图,在四边形ABCD中,AD∥BC,AB⊥BD于点B.已知∠A=45°,∠C=60°,,求AD的长.21.(8分)在如图网格图中,每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=1.(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并直接写出A、C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并直接写出点A2、B2、C2的坐标.22.(10分)如图,在足够大的空地上有一段长为米的旧墙,某人利用旧墙和木栏围成一个矩形菜园,其中,已知矩形菜园的一边靠墙,另三边一共用了米木栏.(1)若米,所围成的矩形菜园的面积为平方米,求所利用旧墙的长;(2)若米,求矩形菜园面积的最大值.23.(10分)画出如图几何体的主视图、左视图、俯视图.24.(10分)解方程:3x2﹣4x+1=1.(用配方法解)25.(12分)(阅读材料)某校九年级数学课外兴趣探究小组在学习完《第二十八章锐角三角函数》后,利用所学知识进行深度探究,得到以下正确的等量关系式:,,,,(理解应用)请你利用以上信息求下列各式的值:(1);(2)(拓展应用)(3)为了求出海岛上的山峰的高度,在处和处树立标杆和,标杆的高都是3丈,两处相隔1000步(1步等于6尺),并且和在同一平面内,在标杆的顶端处测得山峰顶端的仰角75°,在标杆的顶端处测得山峰顶端的仰角30°,山峰的高度即的长是多少步?(结果保留整数)(参考数据:)26.小丹要测量灯塔市葛西河生态公园里被湖水隔开的两个凉亭和之间的距离,她在处测得凉亭在的南偏东方向,她从处出发向南偏东方向走了米到达处,测得凉亭在的东北方向.(1)求的度数;(2)求两个凉亭和之间的距离(结果保留根号).

参考答案一、选择题(每题4分,共48分)1、A【分析】先根据点A的坐标求出两个函数解析式,然后联立两个解析式即可求出答案.【题目详解】将A(1,2)代入反比例函数(),得a=2,∴反比例函数解析式为:,将A(1,2)代入正比例函数(),得k=2,∴正比例函数解析式为:,联立两个解析式,解得或,∴点B的坐标为(-1,-2),故选:A.【题目点拨】本题考查了反比例函数和正比例函数,求出函数解析式是解题关键.2、A【分析】设年平均增长率为,根据:2017年的人均收入×1+增长率=年的人均收入,列出方程即可.【题目详解】设设年平均增长率为,根据题意,得:,故选:A.【题目点拨】本题主要考查一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.3、C【分析】由题意易得,根据两个相似三角形的周长比等于相似比可直接得解.【题目详解】,,△ADE与△ABC的周长比为2∶5,,.故选C.【题目点拨】本题主要考查相似三角形的性质,关键是根据两个三角形相似,那么它们的周长比等于相似比.4、A【解题分析】试题分析:连接AD,OD,∵等腰直角△ABC中,∴∠ABD=45°.∵AB是圆的直径,∴∠ADB=90°,∴△ABD也是等腰直角三角形,∴.∵AB=8,∴AD=BD=4,∴S阴影=S△ABC-S△ABD-S弓形AD=S△ABC-S△ABD-(S扇形AOD-S△ABD)=×8×8-×4×4-+××4×4=16-4π+8=24-4π.故选A.考点:扇形面积的计算.5、C【分析】根据二次函数的性质分别判断后即可确定正确的选项.【题目详解】解:A、∵a=1>0,

∴抛物线开口向上,选项A不正确;

B、∵-=,

∴抛物线的对称轴为直线x=,选项B不正确;

C、当x=时,y=-,

∴当x=时,y有最小值是-,选项C正确;

D、∵a>0,抛物线的对称轴为直线x=,

∴当x>时,y随x值的增大而增大,选项D不正确.

故选:C.【题目点拨】本题考查了二次函数的性质以及二次函数的图象,利用二次函数的性质逐一分析四个选项的正误是解题的关键.6、C【分析】先设DE=x,然后根据已知条件分别用x表示AF、BF、BE的长,由DE∥AB可知,进而可求出x的值和BE的长.【题目详解】解:设DE=x,则AF=2x,BF=18﹣2x,∵EF⊥AB,∴∠EFB=90°,∵cosB==,∴BE=(18﹣2x),∵DE∥AB,∴,∴∴x=6,∴BE=(18﹣12)=10,故选:C.【题目点拨】本题主要考查了三角形的综合应用,根据平行线得到相关线段比例是解题关键.7、B【分析】根据直角三角形斜边上的中线等于斜边的一半可判断①正确;先证明△ABM∽△ACN,再根据相似三角形的对应边成比例可判断②正确;如果△PMN为等边三角形,求得∠MPN=60°,推出△CPM是等边三角形,得到△ABC是等边三角形,而△ABC不一定是等边三角形,故③错误;当∠ABC=45°时,∠BCN=45°,由P为BC边的中点,得出BN=PB=PC,判断④正确.【题目详解】解:①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=BC,PN=BC,∴PM=PN,正确;②在△ABM与△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,∴,②正确;③∵∠ABC=60°,∴∠BPN=60°,如果△PMN为等边三角形,∴∠MPN=60°,∴∠CPM=60°,∴△CPM是等边三角形,∴∠ACB=60°,则△ABC是等边三角形,而△ABC不一定是等边三角形,故③错误;④当∠ABC=45°时,∵CN⊥AB于点N,∴∠BNC=90°,∠BCN=45°,∴BN=CN,∵P为BC边的中点,∴PN⊥BC,△BPN为等腰直角三角形∴BN=PB=PC,故④正确.故选:B.【题目点拨】此题主要考查相似三角形的判定与性质,解题的关键是熟知直角三角形的性质、等腰三角形的判定与性质及相似三角形的性质.8、B【分析】首先连接OC,由CE是切线,可得,由圆周角定理,可得,继而求得的度数,则可求得的值.【题目详解】解:连接OC,

是切线,

即,

,、分别是所对的圆心角、圆周角,

.故选:B.【题目点拨】此题考查了切线的性质、圆周角定理以及特殊角的三角函数值.根据切线的性质连半径是解题的关键.9、A【分析】根据图象与x轴的交点即可求出方程的根.【题目详解】根据题意得,对称轴为∵∴∴故答案为:A.【题目点拨】本题考查了一元二次方程的问题,掌握一元二次方程图象的性质是解题的关键.10、D【分析】这个几何体的侧面是以底面圆周长为长、圆柱体的高为宽的矩形,根据矩形的面积公式计算即可.【题目详解】根据三视图可得几何体为圆柱,圆柱体的侧面积=底面圆的周长圆柱体的高=故答案为:D.【题目点拨】本题考查了圆柱体的侧面积问题,掌握矩形的面积公式是解题的关键.11、D【分析】根据网格图形可得所给△EFG是两直角边分别为1,2的直角三角形,然后利用相似三角形的判定方法选择答案即可.【题目详解】解:观察图形可得△EFG中,直角边的比为,观各选项,,只有D选项三角形符合,与所给图形的三角形相似.故选:D.【题目点拨】本题考查了相似三角形的判定,勾股定理的应用,熟练掌握网格结构,观察出所给图形的直角三角形的特点是解题的关键.12、B【分析】根据象限内点的坐标特点即可解答.【题目详解】点A(﹣5,4)所在的象限是第二象限,故选:B.【题目点拨】此题考查象限内点的坐标,熟记每个象限及坐标轴上点的坐标特点是解题的关键.二、填空题(每题4分,共24分)13、【分析】根据三视图可得出该几何体为圆锥,圆锥的表面积=底面积+侧面积(侧面积将圆锥的侧面积不成曲线地展开,是一个扇形.),用字母表示就是S=πr²+πrl(其中l=母线,是圆锥的顶点到圆锥的底面圆周之间的距离).【题目详解】解:由题意可知,该几何体是圆锥,其中底面半径为2,母线长为6,∴故答案为:.【题目点拨】本题考查的知识点是几何体的三视图以及圆锥的表面积公式,熟记圆锥的面积公式是解此题的关键.14、【分析】连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC的度数,然后求出菱形ABCO及扇形AOC的面积,则由S扇形AOC-S菱形ABCO可得答案.【题目详解】连接OB和AC交于点D,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC是菱形,∴OB⊥AC,OD=OB=1,在Rt△COD中利用勾股定理可知:∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=S扇形AOC=则图中阴影部分面积为S扇形AOC﹣S菱形ABCO=故答案为【题目点拨】本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积和扇形的面积,有一定的难度.15、4﹣6【分析】根据一元二次方程根与系数的关系即可得答案.【题目详解】设方程的两个根为x1、x2,∵a=1,b=-4,c=-6,∴x1+x2=-=4,x1·x2==-6,故答案为4,﹣6【题目点拨】本题考查一元二次方程根与系数的关系,若一元二次方程y=ax2+bx+c(a≠0)的两个根为x1、x2,那么,x1+x2=-,x1·x2=;熟练掌握韦达定理是解题关键.16、y<-1【分析】根据函数解析式可知当x>0时,y随x的增大而增大,求出当x=1时对应的y值即可求出y的取值范围.【题目详解】解:∵反比例函数,-4<0,∴当x>0时,y随x的增大而增大,当x=1时,y=-1,∴当,则y的取值范围是y<-1,故答案为:y<-1.【题目点拨】本题考查了根据反比例函数自变量的取值范围,确定函数值的取值范围,解题的关键是熟知反比例函数的增减性.17、50.【分析】作CD⊥直线l,由∠ACB=∠CAB=30°,AB=50m知AB=BC=50m,∠CBD=60°,根据CD=BCsin∠CBD计算可得.【题目详解】如图,过点C作CD⊥直线l于点D,∵∠BCD=30°,∠ACD=60°,∴∠ACB=∠CAB=30°,∵AB=100m,∴AB=BC=100m,∠CBD=60°,在Rt△BCD中,∵sin∠CBD=,∴CD=BCsin∠CBD=100×=50(m),故答案是:50.【题目点拨】本题主要考查解直角三角形的应用,解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.18、6【分析】根据题意作出合适的辅助线,然后根据垂径定理、勾股定理即可求得OP的长,本题得以解决.【题目详解】解:作OE⊥AB交AB与点E,作OF⊥CD交CD于点F,连接OB,如图所示,则AE=BE,CF=DF,∠OFP=∠OEP=∠OEB=90°,又∵圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,∴∠FPE=90°,OB=10,BE=8,∴四边形OEPF是矩形,OE==6,同理可得,OF=6,∴EP=6,∴OP=,故答案为:.【题目点拨】本题考查垂径定理、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.三、解答题(共78分)19、(1);(2);(3)【分析】(1)求出点B的坐标,设直线解析式为,代入A、B即可求得直线解析式;(2)过点作于点,延长交于点,通过证明≌,可得,,故点的横坐标为,,设,可求得,故S与的函数关系式为;(3)延长、交于点,过点作点,连接、,先证明≌,可得,通过等量代换可得,再由勾股定理可得,结合即可解得.【题目详解】(1)∵∴,∴∴点设直线解析式为解得,∴直线解析式为(2)过点作于点,延长交于点,∵轴,轴∴∴∴四边形是矩形,∴,∴,∴≌∴,,点的横坐标为,,设,则,∵∴∴∴(3)延长、交于点,过点作点,连接、由(2)可知,∴又∵∵∴∴,,延长交于点,∵,∴∵∴,,∴≌∴∵∴∴∴∵∴∵∴由勾股定理可得∵∴,∴【题目点拨】本题考查了直线解析式的几何问题,掌握直线解析式的性质、全等三角形的性质以及判定定理、勾股定理是解题的关键.20、.【分析】过点D作DE⊥BC于E,在Rt△CDE中,∠C=60°,,则可求出DE,由已知可推出∠DBE=∠ADB=45°,根据直解三角形的边角关系依次求出BD,AD即可.【题目详解】过点D作DE⊥BC于E∵在Rt△CDE中,∠C=60°,,∴,∵AB⊥BD,∠A=45°,∴∠ADB=45°.∵AD∥BC,∴∠DBE=∠ADB=45°∴在Rt△DBE中,∠DEB=90°,,∴,又∵在Rt△ABD中,∠ABD=90°,∠A=45°,∴.【题目点拨】本题考查了解直角三角形的知识,正确作出辅助线是解题的关键.21、(1)见解析;(2)(0,1),(﹣3,1);(3)(0,﹣1),(3,﹣5),(3,﹣1).【分析】(1)利用网格特点和旋转的性质画出B、C的对应点B1、C1即可;(2)利用B点坐标画出直角坐标系,然后写出A、C的坐标;(3)利用关于原点对称的点的坐标特征写出点A2、B2、C2的坐标,然后描点即可.【题目详解】解:(1)如图,△AB1C1为所作;(2)如图,A点坐标为(0,1),C点的坐标为(﹣3,1);(3)如图,△A2B2C2为所作,点A2、B2、C2的坐标烦恼为(0,﹣1),(3,﹣5),(3,﹣1).【题目点拨】本题考查的是平面直角坐标系,需要熟练掌握旋转的性质以及平面直角坐标系中点的特征.22、(1)的长为;(2)当时,矩形菜园面积的最大值为.【分析】(1)设AB=xm,则BC=(100-2x)m,列方程求解即可;

(2)设AB=xm,由题意得关于x的二次函数,利用二次函数的性质即可解决问题.【题目详解】(1)设AB=,则BC,根据题意得,解得,,当时,,不合题意舍去;当时,,答:AD的长为;(2)设AD=,∴则时,的最大值为;答:当时,矩形菜园面积的最大值为.【题目点拨】本题考查了一元二次方程和二次函数在实际问题中的应用,根据题意正确列式并明确二次函数的相关性质,是解题的关键.23、如图所示,见解析.【分析】根据长对正、高平齐、宽相等来画三视图即可.【题目详解】如图所示:.【题目点拨】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.24、x1=1,x2=【分析】首先把系数化为1,移项,把常数项移到等号的右侧,然后在方程的左右两边同时加上一次项系数的一半,即可使左边是完全平方公式,右边是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论