版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省汕头市名校2024届数学九年级第一学期期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列方程中是关于x的一元二次方程的是()A. B.ax2+bx+c=0C.(x-1)(x+2)=1 D.3x2-2xy-5y2=02.如图,已知一次函数y=kx-2的图象与x轴、y轴分别交于A,B两点,与反比例函数的图象交于点C,且AB=AC,则k的值为()A.1 B.2 C.3 D.43.下列事件为必然事件的是()A.打开电视机,正在播放新闻 B.任意画一个三角形,其内角和是C.买一张电影票,座位号是奇数号 D.掷一枚质地均匀的硬币,正面朝上4.如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形OA′B′C′,再作图形OA′B′C′关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是()A.(2,-1) B.(1,-2) C.(-2,1) D.(-2,-1)5.若关于的一元二次方程的两个实数根是和3,那么对二次函数的图像和性质的描述错误的是()A.顶点坐标为(1,4) B.函数有最大值4 C.对称轴为直线 D.开口向上6.下列图形中,∠1与∠2是同旁内角的是()A.B.C.D.7.如图,BD是⊙O的直径,点A、C在⊙O上,,∠AOB=60°,则∠BDC的度数是()A.60° B.45° C.35° D.30°8.如图,直线,等腰的直角顶点在上,顶点在上,若,则()A.31° B.45° C.30° D.59°9.某细胞的直径约为0.0000008米,该直径用科学记数法表示为()A.米 B.米 C.米 D.米10.下列事件中,是随机事件的是()A.画一个三角形,其内角和是180°B.在只装了红色卡片的袋子里,摸出一张白色卡片C.投掷一枚正六面体骰子,朝上一面的点数小于7D.在一副扑克牌中抽出一张,抽出的牌是黑桃6二、填空题(每小题3分,共24分)11.对于抛物线,下列结论:①抛物线的开口向下;②对称轴为直线;③顶点坐标为;④时,图像从左至右呈下降趋势.其中正确的结论是_______________(只填序号).12.在反比例函数y=﹣的图象上有两点(﹣,y1),(﹣1,y1),则y1_____y1.(填>或<)13.剪掉边长为2的正方形纸片4个直角,得到一个正八边形,则这个正八边形的边长为____________.14.如图,反比例函数y=的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y=的图象上运动,tan∠CAB=2,则k=_____.15.如图所示,在中,,将绕点旋转,当点与点重合时,点落在点处,如果,,那么的中点和的中点的距离是______.16.如图,已知直线y=mx与双曲线y=一个交点坐标为(3,4),则它们的另一个交点坐标是_____.17.如图,网格中的四个格点组成菱形ABCD,则tan∠DBC的值为___________.18.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为.三、解答题(共66分)19.(10分)如图在直角坐标系中△ABC的顶点A、B、C三点坐标为A(7,1),B(8,2),C(9,0).(1)请在图中画出△ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形△A'B'C'(要求与△ABC在P点同一侧);(2)直接写出A'点的坐标;(3)直接写出△A'B'C'的周长.20.(6分)如图,在正方形ABCD中,AB=4,动点P从点A出发,以每秒2个单位的速度,沿线段AB方向匀速运动,到达点B停止.连接DP交AC于点E,以DP为直径作⊙O交AC于点F,连接DF、PF.(1)求证:△DPF为等腰直角三角形;(2)若点P的运动时间t秒.①当t为何值时,点E恰好为AC的一个三等分点;②将△EFP沿PF翻折,得到△QFP,当点Q恰好落在BC上时,求t的值.21.(6分)如图,在等边三角形ABC中,点D,E分别在BC,AB上,且∠ADE=60°.求证:△ADC~△DEB.22.(8分)若a≠0且a2﹣2a=0,求方程16x2﹣4ax+1=3﹣12x的根.23.(8分)如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行60米到达C处,再测得山顶A的仰角为45°,求山高AD的长度.(测角仪高度忽略不计)24.(8分)某扶贫单位为了提高贫困户的经济收入,购买了33m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个中间带有铁栅栏的矩形养鸡场(如图所示).(1)若要建的矩形养鸡场面积为90m2,求鸡场的长(AB)和宽(BC);(2)该扶贫单位想要建一个100m2的矩形养鸡场,请直接回答:这一想法能实现吗?25.(10分)“校园读诗词诵经典比赛”结束后,评委刘老师将此次所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图,部分信息如下图:扇形统计图频数直方图(1)参加本次比赛的选手共有________人,参赛选手比赛成绩的中位数在__________分数段;补全频数直方图.(2)若此次比赛的前五名成绩中有名男生和名女生,如果从他们中任选人作为获奖代表发言,请利用表格或画树状图求恰好选中男女的概率.26.(10分)如图,已知是的一条弦,请用尺规作图法找出的中点.(保留作图痕迹,不写作法)
参考答案一、选择题(每小题3分,共30分)1、C【分析】一元二次方程是指只含有一个未知数,且未知数的最高次数为2次的整式方程.根据定义即可求解.【题目详解】解:A选项含有分式,故不是;B选项中没有说明a≠0,则不是;C选项是一元二次方程;D选项中含有两个未知数,故不是;故选:C.【题目点拨】本题主要考查的是一元二次方程的定义,属于基础题型.解决这个问题的关键就是要明确一元二次方程的定义.2、B【分析】如图所示,作CD⊥x轴于点D,根据AB=AC,证明△BAO≌△CAD(AAS),根据一次函数解析式表达出BO=CD=2,OA=AD=,从而表达出点C的坐标,代入反比例函数解析式即可解答.【题目详解】解:如图所示,作CD⊥x轴于点D,∴∠CDA=∠BOA=90°,∵∠BAO=∠CAD,AB=AC,∴△BAO≌△CAD(AAS),∴BO=CD,对于一次函数y=kx-2,当x=0时,y=-2,当y=0时,x=,∴BO=CD=2,OA=AD=,∴OD=∴点C(,2),∵点C在反比例函数的图象上,∴,解得k=2,故选:B.【题目点拨】本题考查了反比例函数与一次函数的交点问题,全等三角形的判定与性质,反比例函数图象上点的坐标特征,难度适中.表达出C点的坐标是解题的关键.3、B【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【题目详解】∵A,C,D选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有B,任意画一个三角形,其内角和是,是必然事件,符合题意.故选B.【题目点拨】本题考查的是对必然事件的概念的理解.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.用到的知识点为:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、A【解题分析】先找出对应点,再用线段顺次连接作出图形,根据图形解答即可.【题目详解】如图,.故选A.【题目点拨】本题考查了轴对称作图及中心对称作图,熟练掌握轴对称作图及中心对称的性质是解答本题的关键,中心对称的性质:①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.5、D【分析】由题意根据根与系数的关系得到a<0,根据二次函数的性质即可得到二次函数y=a(x-1)2+1的开口向下,对称轴为直线x=1,顶点坐标为(1,1),当x=1时,函数有最大值1.【题目详解】解:∵关于x的一元二次方程的两个实数根是-1和3,∴-a=-1+3=2,∴a=-2<0,∴二次函数的开口向下,对称轴为直线x=1,顶点坐标为(1,1),当x=1时,函数有最大值1,故A、B、C叙述正确,D错误,故选:D.【题目点拨】本题考查二次函数的性质,根据一元二次方程根与系数的关系以及根据二次函数的性质进行分析是解题的关键.6、C【解题分析】分析:根据同旁内角的定义进行分析判断即可.详解:A选项中,∠1与∠2是同位角,故此选项不符合题意;B选项中,∠1与∠2是内错角,故此选项不符合题意;C选项中,∠1与∠2是同旁内角,故此选项符合题意;D选项中,∠1与∠2不是同旁内角,故此选项不符合题意.故选C.点睛:熟知“同旁内角的定义:在两直线被第三直线所截形成的8个角中,夹在被截两直线之间,且位于截线的同侧的两个角叫做同旁内角”是解答本题的关键.7、D【解题分析】试题分析:直接根据圆周角定理求解.连结OC,如图,∵=,∴∠BDC=∠BOC=∠AOB=×60°=30°.故选D.考点:圆周角定理.8、A【分析】过点B作BD//l1,,再由平行线的性质即可得出结论.【题目详解】解:过点B作BD//l1,则∠α=∠CBD.
∵,
∴BD//,
∴∠β=∠DBA,
∵∠CBD+∠DBA=45°,
∴∠α+∠β=45°,∵∴∠α=45°-∠β=31°.
故选A.【题目点拨】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解答此题的关键.9、B【分析】根据绝对值小于1的正数也可以利用科学记数法表示,一般形式为且,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:根据科学计数法得:.故选:B.【题目点拨】本题主要考查科学计数法,熟记科学计数法的一般形式是且是关键,注意负指数幂的书写规则是由原数左边第一个不为零的数字开始数起.10、D【分析】根据事件发生的可能性大小判断相应事件的类型即可.【题目详解】A.画一个三角形,其内角和是180°,是必然事件,故不符合题意;B.在只装了红色卡片的袋子里,摸出一张白色卡片,是不可能事件,故不符合题意;C.投掷一枚正六面体骰子,朝上一面的点数小于7,是必然事件,故不符合题意;D.在一副扑克牌中抽出一张,抽出的牌是黑桃6,是随机事件,故符合题意;故选:D【题目点拨】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题(每小题3分,共24分)11、①③④【分析】根据二次函数的性质对各小题分析判断即可得解.【题目详解】解:在抛物线中,∵,∴抛物线的开口向下;①正确;∴对称轴为直线;②错误;∴顶点坐标为;③正确;∴时,图像从左至右呈下降趋势;④正确;∴正确的结论有:①③④;故答案为:①③④.【题目点拨】本题考查了二次函数的性质,主要利用了抛物线的开口方向、对称轴、顶点坐标,以及二次函数的增减性.12、>【分析】直接将(﹣,y2),(﹣2,y2)代入y=﹣,求出y2,y2即可.【题目详解】解:∵反比例函数y=﹣的图象上有两点(﹣,y2),(﹣2,y2),∴=4,y2=﹣=2.∵4>2,∴y2>y2.故答案为:>.【题目点拨】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13、【分析】设腰长为x,则正八边形边长2-2x,根据勾股定理列方程,解方程即可求出正八边形的边.【题目详解】割掉的四个直角三角形都是等腰直角三角形,设腰长为x,则正八边形边长2-2x,,(舍),,.故答案为:.【题目点拨】本题考查了正方形和正八边形的性质以及勾股定理的运用,解题的关键是设出未知数用列方程的方法解决几何问题.14、-1【分析】连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F,通过角的计算找出∠AOE=∠COF,结合“∠AEO=90°,∠CFO=90°”可得出△AOE∽△COF,根据相似三角形的性质得出比例式,再由tan∠CAB=2,可得出CF•OF的值,进而得到k的值.【题目详解】如图,连接OC,过点A作AE⊥x轴于点E,过点C作CF⊥y轴于点F.∵由直线AB与反比例函数y的对称性可知A、B点关于O点对称,∴AO=BO.又∵AC=BC,∴CO⊥AB.∵∠AOE+∠AOF=90°,∠AOF+∠COF=90°,∴∠AOE=∠COF.又∵∠AEO=90°,∠CFO=90°,∴△AOE∽△COF,∴,∵tan∠CAB2,∴CF=2AE,OF=2OE.又∵AE•OE=2,CF•OF=|k|,∴|k|=CF•OF=2AE×2OE=4AE×OE=1,∴k=±1.∵点C在第二象限,∴k=﹣1.故答案为:﹣1.【题目点拨】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质以及相似三角形的判定及性质,解答本题的关键是求出CF•OF=1.解答该题型题目时,巧妙的利用了相似三角形的性质找出对应边的比例,再结合反比例函数图象上点的坐标特征找出结论.15、4【分析】设,在中,,得.由勾股定理,再求AM,AB,证,.得,,可得.【题目详解】如图所示,,是的中点,,,.设,在中,,.,.,.,,,可得,同理可证.,,.故答案为:4【题目点拨】考核知识点:解直角三角形.构造直角三角形,利用三角形相关知识分析问题是关键.16、(﹣3,﹣4)【分析】根据反比例函数与正比例函数的中心对称性解答即可.【题目详解】解:因为直线y=mx过原点,双曲线y=的两个分支关于原点对称,所以其交点坐标关于原点对称,一个交点坐标为(3,4),则另一个交点的坐标为(﹣3,﹣4).故答案是:(﹣3,﹣4).【题目点拨】本题考查了反比例函数和正比例函数的性质,通过数形结合和中心对称的定义很容易解决.反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.17、3【解题分析】试题分析:如图,连接AC与BD相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,BO=BD,CO=AC,由勾股定理得,AC==,BD==,所以,BO==,CO==,所以,tan∠DBC===3.故答案为3.考点:3.菱形的性质;3.解直角三角形;3.网格型.18、2α【解题分析】分析:由在Rt△ABC中,∠ACB=90°,∠A=α,可求得:∠B=90°﹣α,由旋转的性质可得:CB=CD,根据等边对等角的性质可得∠CDB=∠B=90°﹣α,然后由三角形内角和定理,求得答案:∵在Rt△ABC中,∠ACB=90°,∠A=α,∴∠B=90°﹣α.由旋转的性质可得:CB=CD,∴∠CDB=∠B=90°﹣α.∴∠BCD=180°﹣∠B﹣∠CDB=2α,即旋转角的大小为2α.三、解答题(共66分)19、(1)见解析;(2)A′(﹣3,3),B′(0,6),C′(0,3);(3).【分析】(1)延长PB到B′,使PB′=3PB,延长PA到B′,使PA′=3PA,延长PC到C′,使PC′=3PC;顺次连接A′、B′、C′,即可得到△A'B'C′;(2)利用(1)所画图形写出A′点的坐标即可;(3)利用勾股定理计算出A′B′、B′C′、A′C′,然后求它们的和即可.【题目详解】(1)如图,△A′B′C′,为所作;(2)A′、B′、C′三点的坐标分别是:A′(﹣3,3),B′(0,6),C′(0,3);(3)A′B′==3,A′C′==3,B′C′==3,所以△A′B′C′的周长=3+3+3=.【题目点拨】本题考查作图——位似变换,画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.20、(1)详见解析;(2)①1;②﹣1.【分析】(1)要证明三角形△DPF为等腰直角三角形,只要证明∠DFP=90°,∠DPF=∠PDF=45°即可,根据直径所对的圆周角是90°和同弧所对的圆周角相等,可以证明∠DFP=90°,∠DPF=∠PDF=45°,从而可以证明结论成立;(2)①根据题意,可知分两种情况,然后利用分类讨论的方法,分别计算出相应的t的值即可,注意点P从A出发到B停止,t≤4÷2=2;②根据题意,画出相应的图形,然后利用三角形相似,勾股定理,即可求得t的值.【题目详解】证明:(1)∵四边形ABCD是正方形,AC是对角线,∴∠DAC=45°,∵在⊙O中,所对的圆周角是∠DAF和∠DPF,∴∠DAF=∠DPF,∴∠DPF=45°,又∵DP是⊙O的直径,∴∠DFP=90°,∴∠FDP=∠DPF=45°,∴△DFP是等腰直角三角形;(2)①当AE:EC=1:2时,∵AB∥CD,∴∠DCE=∠PAE,∠CDE=∠APE,∴△DCE∽△PAE,∴,∴,解得,t=1;当AE:EC=2:1时,∵AB∥CD,∴∠DCE=∠PAE,∠CDE=∠APE,∴△DCE∽△PAE,∴,∴,解得,t=4,∵点P从点A到B,t的最大值是4÷2=2,∴当t=4时不合题意,舍去;由上可得,当t为1时,点E恰好为AC的一个三等分点;②如右图所示,∵∠DPF=90°,∠DPF=∠OPF,∴∠OPF=90°,∴∠DPA+∠QPB=90°,∵∠DPA+∠PDA=90°,∴∠PDA=∠QPB,∵点Q落在BC上,∴∠DAP=∠B=90°,∴△DAP∽△PBQ,∴,∵DA=AB=4,AP=2t,∠DAP=90°,∴DP==2,PB=4﹣2t,设PQ=a,则PE=a,DE=DP﹣a=2﹣a,∵△AEP∽△CED,∴,即,解得,a=,∴PQ=,∴,解得,t1=﹣﹣1(舍去),t2=﹣1,即t的值是﹣1.【题目点拨】此题主要考查四边形综合,解题的关键是熟知正方形的性质、圆周角定理、相似三角形的判定与性质.21、见解析【解题分析】根据等边三角形性质得∠B=∠C,根据三角形外角性质得∠CAD=∠BDE,易证.【题目详解】证明:ABC是等边三角形,∴∠B=∠C=60°,∴∠ADB=∠CAD+∠C=∠CAD+60°,∵∠ADE=60°,∴∠ADB=∠BDE+60°,∴∠CAD=∠BDE,∴【题目点拨】考核知识点:相似三角形的判定.根据等边三角形性质和三角形外角确定对应角相等是关键.22、x1=﹣,x2=【分析】由a≠0且a2﹣2a=0,得a=2,代入方程16x2﹣4ax+1=3﹣12x,求得根即可【题目详解】解:∵a≠0且a2﹣2a=0,∴a(a﹣2)=0,∴a=2,故方程16x2﹣8x+1=3﹣12x,整理得8x2+2x﹣1=0,(2x+1)(4x﹣1)=0,解得.【题目点拨】本题考查了一元二次方程的解法,正确理解题意.熟练掌握一元二次方程的解法步骤是解决本题的关键.23、30米【解题分析】设AD=xm,在Rt△ACD中,根据正切的概念用x表示出CD,在Rt△ABD中,根据正切的概念列出方程求出x的值即可.【题目详解】由题意得,∠ABD=30°,∠ACD=45°,BC=60m,设AD=xm,在Rt△ACD中,∵tan∠ACD=,∴CD=AD=x,∴BD=BC+CD=x+60,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年全球及中国电子计程器行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2024-2030年全球及中国电信中的地理信息系统行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2024-2030年全球及中国汽车悬架和操纵行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2024-2030年全球及中国数据中心自动化软件行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2024-2030年全球及中国手持式去磁器行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2024-2030年全球及中国工业钢丝绳行业现状趋势与前景规划建议研究报告
- 2024-2030年全球及中国安全系统集成商行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2024-2030年全球及中国员工培训和申请人跟踪软件(ATS)行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 新建工业园区建设合同三篇
- 专业市场调研居间合同
- 电磁兼容试验和测量技术射频电磁场辐射抗扰度试验
- 实验室危险废物回收处理工作流程
- YY/T 1496-2016红光治疗设备
- WS 213-2001丙型病毒性肝炎诊断标准及处理原则
- 畜牧兽医法规精品课件
- GB/T 19249-2003反渗透水处理设备
- GB/T 14514.2-1993气动快换接头试验方法
- 建筑施工图设计规范及深度规定
- SMA讲课教学课件
- 《茶与健康知识》课件
- 基本建设程序和工厂设计的组成课件
评论
0/150
提交评论