二元一次方程组应用题分类_第1页
二元一次方程组应用题分类_第2页
二元一次方程组应用题分类_第3页
二元一次方程组应用题分类_第4页
二元一次方程组应用题分类_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学习必备欢迎下载二元一次方程组应用题分类精析列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;找:找出能够表示题意两个相等关系;列:根据这两个相等关系列出必需的代数式,从而列出方程组;解:解这个方程组,求出两个未知数的值;答:在对求出的方程的解做出是否合理判断的基础上,写出答案.一、倍分问题例1、甲乙二人,若乙给甲10元,则甲所有的钱为乙的3倍,若甲给乙10元,则甲所有的钱为乙的2倍多10元,求甲乙各拥有多少钱?解:设甲原来有X元,乙原来有丫元。X+10=3(Y-10)X-10=2(Y+10)+101、一块矩形草坪的长比宽的2倍多10米,它的周长是132米,则宽和长分别是多少?2、一批书分给组学生,每人6本则少6本,每人5本则多5本,该组共有多少名学生,这批书共有多少本?3、某班学生有x人,准备分成y个组开展活动,若每个组7人,则余3人;若每个组8人,则差5人.求全班的人数和所分组数。4、三年级有学生246人,其中男生比女生人数的2倍少3人,求男、女生各有多少人?5、甲乙两条绳共长17米,如果甲绳子减去五分之一,乙绳增加1米,两条绳子相等,求甲、乙两条绳各长多少米?6、已知长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米,求黄河、长江各长多少千米?7、甲乙两个商店各进洗衣机若干台,若甲店拨给乙店 12台,则两店的洗衣机一样多,若乙店拨给甲店12台,则甲店的洗衣机比乙店洗衣机数的5倍还多6台,求甲、乙两店各进洗衣机多少台?&小红和小华各自购买新书若干本,已知小红买的比小华的 2倍多6本,如果小红给小华9本,则小华是小红的2倍,小红和小华各买新书多少本?9、把3米长的铁丝分成两段,做成一个正方形和一个长方形框,已知长方形的长是宽的 2倍,长方形的长比正方形的边长长0。3米,求两个图形的面积。10、有甲、乙两条绳子,其中甲绳长的 3/8与乙绳长的1/3叠合后,全长238厘米,求甲乙两绳长各是多少厘米?2倍,后来又用掉12002倍,后来又用掉1200元,最后12、某化妆晚会上,男生脸上涂蓝色油彩,女生脸上涂红色油彩,游戏时,每个男生都看见涂红色油彩的人数比涂蓝色油彩的人数的2倍少1人,而每个女生都看见涂蓝色的人数是涂红色人数的3/5,则晚会上男、女生各有几人?二、年龄问题 解这类问题的基本关系是抓住两个人年龄的增长数相等。年龄问题的主要特点是:时间发生变化,年龄在增长,但是年龄差始终不变。年龄问题往往是“和差” 、“差倍”等问题的综合应用。解题时,我们一定要抓住年龄差不变这个解题关键。例1、父子的年龄差30岁,五年后父亲的年龄正好是儿子的3倍,问今年父亲和儿子各是多少岁?解:设今年父亲的年龄为X岁,儿子的为丫岁,则根据(1)父子的年龄差30岁,可列式得:X-Y=30;(2)五年后,父亲的年龄是X+5岁,儿子的年龄是丫+5岁;由五年后父亲的年龄正好是儿子的3倍,可列式得:X+5=3(Y+5)(3)联立两式,得今年父亲的年龄是40岁,儿子的年龄是10岁。X-Y=30X+5=3(Y+5)例2:1998年,甲的年龄是乙的年龄的4倍。20XX年,甲的年龄是乙的年龄的3倍。问甲、乙二人2000年的年龄分别是多少岁?A.34岁,12岁B.32岁,8岁C.36岁,12岁D.34岁,10岁【答案】Db解析:抓住年龄问题的关键即年龄差,1998年甲的年龄是乙的年龄的4倍,则甲乙的年龄差为3倍乙的年龄,20XX年,甲的年龄是乙的年龄的3倍,此时甲乙的年龄差为2倍乙的年龄,根据年龄差不变可得3X1998年乙的年龄=2X20XX年乙的年龄3X1998年乙的年龄=2X(1998年乙的年龄+4)1998年乙的年龄=8岁则2000年乙的年龄为10岁1、学生问老师:“您今年多少岁了?”老师风趣的说:“我像你这样大的时候,你才出生,你到我这么大时,我已经37岁了”试求老师和学生的年龄各是多少?

3、现在父亲的年龄是儿子年龄的分别是多少岁?2、甲乙两人在聊天,甲对乙说:"当我的岁数是你现在岁数时,你才4岁。”乙对甲说:“当我的岁数是你现在的岁数时,你将613、现在父亲的年龄是儿子年龄的分别是多少岁?3倍,7年前父亲的年龄是儿子年龄的5倍,问父亲、儿子现在的年龄三、数字问题1、 56十位上的数字5表示5个10 ,个位上的数字6表示6个1,那么56可写成5X10+6 。2、(1)一个三位数百位上的数字是a,十位上的数字是b,个位上的数字是c。请你表示出这个三位数:设百位上的数字为x,则这个百位数可表示为:100x+10(x+3)+(x+5)(2)已知:一个三位数十位上的数字比百位上的数字大 3,个位上的数字比十位上的数字大2。请你表示出这个三位数:设百位上的数字为x,则这个三位数可表示为:100x+10(x+3)+(x+5)(3) 若各位上的数字之和不大于11,求这个三位数。x+(x+3)+(x+5)<113、 326=32X10+6=3X100 +26732仁73X100 +211234=12X100+34abc表示一个三位数,则abc=aX100+bc=abX10+c若abcd表示一个四位数,则abcd=abX100+cd例1:两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数, 也得到一个四位数。已知前一个四位数比后一个四位数大2178,求这个两位思考:设较大的两位数为x,较小的两位数为y,1、 在较大的两位数的右边接着写较小的两位数,得到一个四位数可表示为2、 在较大的两位数的左边写上较小的两位数,得到一个四位数可表示为45;又已知百位数字的9倍比由十例45;又已知百位数字的9倍比由十解:设百位数字为x,由十位和个位数字组成的两位数为y,则原来的三位数为100x+y,对调的三位数为10y+x,则9x=y—310y+x=100x+y—45x=4y=39则原来的三位数为100x+y=4X100+39=43Q另解:设百位数字为x,十位数字y,个位数字为z,则有9x=10y+z—3(100x+10y+z)—(100y+10z+x)=45得x=410y+z=9x+3=39则原来的三位数是100x+10y+z=100X4+39=4391、有一个两位数,个位上的数比十位上的数大 5,如果把两个数字的位置对换,那么所得的新数与原数的和是143,求这个两位数.2、有一个两位数和一个一位数,如果在这个一位数后面多写一个 0,则它与这个两位数的和是 146,如果用这个两位数除以这个一位数,则商 6余2,求这个两位数和一位数.3、.有一个两位数,其值等于十位数字与个位数字之和的 4倍,其十位数字比个位数字小2,求这个两位数.4、一个三位数和一个两位数的差为225,在三位数的左边写这个两位数,得到一个五位数,在三位数的右边写上这个两位数,也得到一个五位数,已知前面的五位数比后面的五位数大 225,求这个三位数和两位数.5、如下图,在3X3的方格内,填写了一些代数式和数.(1)在图①中各行、各列及对角线上三个数之和都相等,请你求出 X、y的值;(2) 把满足(1)的其它6个数填入图②的方格内.分析:本题是一道与表格数字排列有关的信息试题,根据各行、各列及对角线上的数字和相等,可列方程组解决•所列的方程组不惟一.6、甲、乙两人做加法,甲将其中一个加数后面多写了一个 0,所得的和是2342,乙将同一个加数后面少写了一个0,所得的和是65,求原来的两个加数.原来的两个加数分别是42和230.7、有一个三位数,各数位上的数字之和等于 14,个位上的数字比十位上的数字大4,如果把百位上的数字与个位上的数字对调,所组成的新数比原数的 3倍多98,求这个三位数是多少?&已知二位数,其十位数字的3倍与个位数字的和是21,它的个位与十位数字对调后,所得的新数比原数大9,请问原数是多少?♦规律方法一般性应用题(和差倍问题)学校的篮球比足球数的2倍少3个,篮球数与足球数的比为3:2,求这两种球队各是多少个?(和差倍问题)一次篮,排球比赛,共有48个队,520名运动员参加,其中篮球队每队10名,排球队每队12名,求篮,排球各有多少队参赛?(和差倍问题)一次篮、排球比赛,共有48个队,520名运动员参加,其中篮球队每队10名,排球队每队12名,求篮、排球各有多少队参赛?(和差倍问题)有甲、乙两种金属,甲金属的16分之一和乙金属的33分之一重量相等,而乙金属的55分之一比甲金属的40分之一重7克,求两种金属各重多少克?(和差倍问题)某厂第二车间的人数比第一车间的人数的五分之四少 30人如果从第一车间调10人到第二车间,那么第二车间的人数就是第一车间的四分之三•问这两个车间各有多少人?学习必备欢迎下载(和差倍问题)今年,小李的年龄是他爷爷的五分之二.小李发现,12年之后,他的年龄变成爷爷的三分之一.试求出今年小李的年龄.(和差倍问题)小明和小亮做加法游戏,小明在一个加数后面多写了一个 0,得到的和为242;而小亮在另一个加数后面多写了一个0,得到的和为341,原来两个加数分别是多少?(和差倍问题、行程问题)一条公路,第一天修了全程的 8分之一多5米;第二天修了全程的5分之一少14米,还剩63米,求这条公路有多长?(和差倍问题、行程问题)某老翁将一根长草绳剪成前、中、后三段,中段长等于前段长加后段长,后段长等于前段长加中段长的一半,现只知道前段长 5m则该草绳的中段,后段各长多少米?(和差倍问题、金融问题)共青团中央部门发起了“保护母亲河”行动,某校九年级两个班的 115名学生积极参与,已知九一班有三分之一的学生捐了 10元,九二班有五分之二的学生每人捐了十元,两班其余的学生每人捐了5元,两班的捐款总额为785元,问两班各有多少名学生?(和差倍问题)某检测站要在规定时间内检测一批仪器,原计划每天检测 30台这种仪器,则在规定时间内只能检测完总数的七分之三;现在每天实际检测 40台,结果不但比原计划提前了一天完成任务,还可以多检测25台.问规定时间是多少天?这批仪器共多少台?(和差倍问题)游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽。如果每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽比红色的多 1倍,你知道男孩与女孩各有多少人吗?问题:⑴问题中的已知量是什么?待求量是什么?⑵有哪些相等关系(即等量关系)?(行程问题)一条船顺流航行,每小时行20千米;逆流航行每小时行16千米。那么这条轮船在静水中每小时行 千米?(行程问题)甲以5km/h的速度进行有氧体育锻炼,2h后,乙骑自行车从同地出发沿同一条路追赶甲。根据他们两人的约定,乙最快不早于1h追上甲,最慢不晚于1h15min追上甲,则乙骑车的速度应当控制在什么范围?(行程问题)从甲地到乙地的路有一段上坡、一段平路与一段 3千米长的下坡,如果保持上坡每小时走3千米,平路每小时走4千米,下坡每小时走5千米,那么从甲到乙地需90分,从乙地到甲地需102分。甲地到乙地全程是多少?(行程问题)某班同学去18千米的北山郊游。只有一辆汽车,需分两组,甲组先乘车、乙组步行。车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时到达北山站。已知车速度是 60千米/时,步行速度是4千米/时,求A点距北山的距离。(行程问题)甲乙两人分别从甲、乙两地同时相向出发,在甲超过中点 50米处甲、乙两人第一次相遇,甲、乙到达乙、甲两地后立即反身往回走,结果甲、乙两人在距甲地 100米处第二次相遇,求甲、乙两地的路程。(行程问题)甲,乙两人分别从甲,乙两地同时相向出发,在甲超过中点50米处甲,乙两人第一次相遇,甲,乙到达乙,甲两地后立即返身往回走,结果甲,乙两人在距甲地100米处第二次相遇,求甲,乙两地的路程.(行程问题)两列火车同时从相距910千米的两地相向出发,10小时后相遇,如果第一列车比第1二列车早出发4小时20分,那么在第二列火车出发8小时后相遇,求两列火车的速度.(行程问题)某班同学去18千米的北山郊游.只有一辆汽车,需分两组,甲组先乘车,乙组步行.车行至A处,甲组下车步行,汽车返回接乙组,最后两组同时达到北山站.已知汽车速度是60千米/时,步行速度是4千米/时,求A点距北山站的距离.(行程问题)通讯员要在规定时间内到达某地,他每小时走 15千米,则可提前24分钟到达某地;如果每小时走12千米,则要迟到15分钟。求通讯员到达某地的路程是多少千米?和原定的时间为多少小时?(分配问题)一级学生去饭堂开会,如果每4人共坐一张长凳,则有28人没有位置坐,如果6人共坐一张长凳,求初一级学生人数及长凳数.(分配调运)运往灾区的两批货物,第一批共480吨,用8节火车车厢和20辆汽车正好装完;第二批共运524吨,用10节火车车厢和6辆汽车正好装完,求每节火车车厢和每辆汽车平均各装多少吨?学习必备欢迎下载(分配问题)若干学生住宿,若每间住4人贝『余~20人,若每间住8人,则有一间不空也不满,问宿舍几间,学生多少人?(分配问题)将若干练习本分给若干名同学,如果每人分4本,那么还余20本;如果每人分8本,那么最后一名同学分到的不足8本,求学生人数和练习本数。(分配问题)课外阅读课上,老师将43本书分给各小组,每组8本,还有剩余;每组9本却又不够。问有几个小组?(分配问题)小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说: “把你珠子的一半给我,我就有10颗1珠子”.小刚却说:“只要把你的3给我,我就有io颗”,如果设小刚的弹珠数为x颗,小龙的弹珠数为y颗,问各有多少颗弹珠?(分配问题)小明与他的爸爸一起做投篮球游戏.两人商定规则为:小明投中1个得3分,小明爸爸投中1个得1分.结果两人一共投中了20个,一计算,发现两人的得分恰好相等•你能告诉我,他们两人各投中几个吗?(分配问题)运往灾区的两批货物,第一批共480吨,用8节火车车厢和20辆汽车正好装完;第二批共运524吨,用10节火车车厢和6辆汽车正好装完,求每节火车车厢和每辆汽车平均各装多少吨?(分配问题)一级学生去饭堂开会,如果每4人共坐一张长凳,则有28人没有位置坐,如果6人共坐一张长凳,求初一级学生人数及长凳数.(分配问题)用白铁皮做罐头盒。每张铁皮可制盒身 16个,或制盒底43个,一个盒身与两个盒底配成一套罐头盒。现有150张白铁皮,用多少张制盒身,多少张制盒底,可以刚好配套?(分配问题)某车间原计划30天生产零件165个。在前8天,共生产出52个零件,由于工期调整,要求提前5天超额完成任务,问以后平均每天至少要生产多少个零件?(分配问题)某篮球队的一个主力队员在一次比赛中22投14中得28分,除了3个三分球外,他还投中的二分球及罚球分别多少个?(分配问题)一群女生住若干间宿舍,每间住4人,剩9人无房住;每间住6人,有间宿舍住不满,可能有多少间宿舍,多少学生?(分配工程问题)现要加工400个机器零件,若甲先做1天,然后两人再共做2天,则还有60个未完成;若两人齐心合作3天,则可超产20个.问甲、乙两人每天各做多少个零件?分析:工作时间X工作效率=工作量(分配调运问题)一船队运送一批货物,如果每艘船装 50吨,还剩下25吨装不完;如果每艘船再多装5吨,还有35吨空位•求这个船队共有多少艘船,共有货物多少吨?(分配调运问题)某运输公司有大小两种货车,2辆大车和3辆小车可运货15.5吨,5辆大车和6辆小车可运货35吨,客户王某有货52吨,要求一次性用数量相等的大小货车运出,问需用大,小货车各多少辆?(分配工程问题)甲、乙两人同时加工一批零件,前3小时两人共加工126件,后5小时甲先花了1小时修理工具,因此甲每小时比以前多加工10件,结果在后一段时间内,甲比乙多加工了10件,甲、乙两人原来每小时各加工多少件?(分配几何问题)用如图一中的长方形和正方形纸板作侧面和底面,做成如图二中竖式和横式的两种无盖纸盒。现在仓库里1500张正方形纸板和1001张长方形纸板, 问两种纸盒各做多少只,恰好使库存TOC\o"1-5"\h\z的纸板用完?学习了二元一次方程组的解法后,我们将面临与二元一次方程组有关的实际问题的挑战 •列二元一次方程组解决实际问题和列一元一次方程解应用题的步骤一样,要经历读题一审题(找相等关系)一设元一列方程(组)一解方程(组)一检验-作答这样几步,只是数量关系稍微复杂一些 .解题的关键仍然是审好题,找准题中的相等关系.下面通过一些与“二元一次方程组有关的典型例题的分析,帮助同学们找到一点解决实际问题的一般思路和方法 •一、“鸡兔同笼”问题例1.一队敌兵一队狗,两队并成一队走•人头狗头七十六,却有二百条腿走•请你用心算一算,多少敌兵多少狗?分析与解答: “鸡兔同笼”问题是一种古老又典型的数学趣题,在这种数学问题中常出现两种不同的动物这两种动物都只有一个头,主要区别在于腿的条数不一样,解答此类问题要紧紧抓住问题当中头和腿的总数来寻找相等关系列方程(组)•我们知道一个人2条腿,一只狗4条腿,由题目提供的人和狗的总学习必备欢迎下载个数为76,腿的总条数为200,易找到相等关萦—「可设有「X个敌兵,y条狗,可得方程组:X=52y=24X+y=762X+4y=200解方程组得:所以有敌兵52个,狗24条.二、 “配套”问题例2.一张方桌有一张桌面和四根桌腿组成,已知 1立方米木料可以做桌面50个或桌腿300个,现有5立方米木料,能做方桌多少张?X+y=54X50X=300y分析与解答:解决“配套”问题的关键是首先弄清“怎样配套” ,从而找到配套的各元素之间的数量关系,为列方程(组)找好相等关系•由“一张方桌有一张桌面和四根桌腿组成”,可知要想配套,桌腿的总数应是桌面总数的4倍.因此,应设x立方米的木料做桌面,y立方米的木料做桌腿,可列方程组:X=3y=2解方程组得:所以要用3立方米的木料做桌面,能做方桌3X50=150张.三、 “数字”问题例3.一个两位数的数字之和为10,十位数字与个位数字互换后,所得新数比原数小36,则原来的两位数是多少?X=3y=7分析与解答:解答“数字”问题的关键要会用字母表示一个多位数 .比如x是一个两位数的个位上的数字,y是这个两位数的十位上的数字,这个两位数可表示为 10y+x.若个位和十位上的数字交换位置,这个两位数应表示为 10x+y.再比如a、b、c分别表示一个三位数的百、十、个位上的数字,则这个三位数表示为: 100a+10b+c.若百位和个位上的数字交换一下,则新的三位数为:100c+10b+a.根据题意可设原两位数的个位数字为x,十位数字为y,则方程组为:X+y=1010y +x—36=10x+y解方程组得:则原两位数是10X7+3=73.四、 “年龄”问题例4.小明问叔叔多少岁了,叔叔说:“我像你这么大时,你才4岁,你到我这么大时,我就40岁了.”则小明和叔叔的岁数分别是多少?分析与解答:解决“年龄”问题一定要注意,不管怎样发展变化,两个人年龄的差值不会发生变化,所以解答此类问题时要紧紧抓住两个人的年龄差来寻找等量关系.由题意可设小明和叔叔现在的年龄分别为x、y岁,则两人的年龄差值为(y—x)岁,所以可得方程组:X=16y=28X—4=y—x40 —y=y—x解这个方程组得:所以小明和叔叔的岁数分别是16岁和28岁.五、 “劳力配置”问题例5.某班同学参加运土劳动,一部分同学抬土,一部分同学挑土,全部同学共用土筐 59个,扁担36根,求抬土和挑土的同学各有多少人?分析与解答: 由于现在学生缺少劳动的体验,对运土劳动没有感性认识,所以很难理解题目的意思.尤其不明白这项劳动中的人力和物力是怎样分配的 .所以解答此题的关键是先要弄清活动中的人和物的分工和分配情况.具体情况如下表:抬土挑土人力2人一组一人一组物力一根扁担,一个土筐一根扁担,两个土筐在弄清下表内容的基础上,题中的数量便清楚了.如下表所示:抬土人数x(人)挑土人数y(人)扁担数(根)y(根)土筐数(个)2y(个)根据题意可得方程组:解方程组得:则抬土和挑土的同学分别有26人和23人.六、 “小孩分桃”问题例6.将一些笔记本分给若干个同学,每人5本,则剩下8本;每人8本,又差7本,求共有几个同学多少个笔记本?X=5y=335X+8=y8x—7=y分析与解答:“小孩分桃”是个有趣的数学问题,解答此类问题时要注意不管怎样分, “桃”的总数是一定的.所以根据题可设有x个同学,y个笔记本,则方程组为:解这个方程组得:所以有5个同学33个笔记本.七、 “顺(逆)水”问题例7.甲、乙两地相距80千米,一艘轮船从甲地出发顺水航行4小时到达乙地,而从乙地出发逆水航行需5小时到达甲地.求船在静水中的速度和水流的速度.分析与解答:解决此类问题的关键是要弄清顺水(逆水)速度与船在静水中的速度和水流速度之间的关系:顺水速度 =船在静水中的速度+水流速度,逆水速度二船在静

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论