下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十一章:全等三角形一、基础知识1.全等图形的有关概念(1)全等图形的定义能够完全重合的两个图形就是全等图形。例如:图13-1和图13-2就是全等图形图13-1图13-2(2)全等多边形的定义两个多边形是全等图形,则称为全等多边形。例如:图13-3和图13-4中的两对多边形就是全等多边形。图13-3图13-4(3)全等多边形的对应顶点、对应角、对应边两个全等的多边形,经过运动而重合,相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角。(4)全等多边形的表示例如:图13-5中的两个五边形是全等的,记作五边形ABCDE≌五边形A’B’C’D’E’(这里符号“≌”表示全等,读作“全等于”)。A’B’BA’B’BAC’CC’CE’D’EE’D’ED图13-5表示图形的全等时,要把对应顶点写在对应的位置。(5)全等多边形的性质全等多边形的对应边、对应角分别相等。(6)全等多边形的识别多边形相等、对应角相等的两个多边形全等。2.全等三角形的识别(1)根据定义若两个三角形的边、角分别对应相等,则这两个三角形全等。(2)根据SSS如果两个三角形的三条边分别对应相等,那么这两个三角形全等。相似三角形的识别法中有一个与(SSS)全等识别法相类似,即三条边对应成比例的两个三角形相似,而相似比为1时,就成为全等三角形。(3)根据SAS如果两个三角形有两边机器夹角分别对应相等,那么这两个三角形全等。相似三角形的识别法中同样有一个是与(SAS)全等识别法相类似,即一角对应相等而夹这个角的两边对应成比例的两个三角形相似,当相似比为1时,即为全等三角形。(4)根据ASA如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。(5)根据AAS如果两个三角形有两个角及其中一角的对边分别对应相等,那么这两个三角形全等。3.直角三角形全等的识别(1)根据HL如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等。(2)SSS、SAS、ASA、AAS对于直角三角形同样适用。判断两个直角三角形全等的方法可分为:已知一锐角和一边或已知两边。4.证明三角形全等的方法证明三角形全等的一般方法有四种:“SSS”、“SAS”、“ASA”、“AAS”。每一种都有给出三个独立的条件,在具体问题中,题设往往只给出一个或两个条件,其余的需要我们自己去发掘和证明。判定方法的选择:已知条件可选择的判定方法一边对应一角对应相等SASAASASA两角对应相等ASAAAS两边对应相等SASSSS具体地说,证明角相等的常用方法有:对顶角相等;两直线平行,同位角、内错角相等;同角(或对角)的余角(补角)相等;角平分线平分的两角相等;角的等量代换等。证明线段相等的方法有:同一线段;中点的定义;平行四边形的对边;等腰三角形的两腰;边的等量代换等。为什么“AAA”和“SSA”不能判定两个三角形全等?这是因为有三个角相等,但边不一定相等,则三角形不一定全等,如图13-6,可以看出△ABC不全等于△ADE;同样,如果两边及其中一边的对角相等,也不能确定三角形全等,如图13-7,AB=AB,AC=AD,∠B=∠B,但△ABC与△ABD不全等AAAAEEDDCCBDCBBDCB图13-6图13-75.证明两个三角形全等如何入手证明两个三角形全等一般采用“综合法”与“分析法”两种。(1)综合法,就是从已知条件入手,进行推理,逐步向要证的结论推进,如从已知条件中推导出对应边或对应角相等,从而推导出三角形全等。同时,也可以从三角形全等推导出对应边、对应角的相等,达到正题的目的。(2)分析法,即从欲证的结论出发,分析结论成立的必需条件,各种条件联系已知,寻找它们之间的关系,逐步靠拢已知条件,从而分析出已知与结论的因果关系。证题时,分析法与综合法结合起来使用更加有效,证三角形全等时,既要有明显的已知条件,又要有隐藏的条件,通过综合法罗列已知条件,再通过分析法找出隐藏条件,从而得证。二、经典例题例1:(1)已知一个三角形有两边的长分别为2cm,13cm,又知这个三角形的周长为偶数,求第三边长。(2)在△ABC中,已知∠A+∠C=2∠B,∠C-∠A=80°,求∠C。[考点透视](1)考察三边关系的应用;(2)考察三角形内角和定理[参考答案]解:(1)设第三边为xcm,则即周长的范围是即又L为偶数即第三边长为13cm(2)又由得例2:已知,在△ABC中,AD是角平分线,,,于E,求:和[考点透视]考察三角形内角和定理及推论、角平分线、高线的性质[参考答案]解:由三角形内角和定理,得又AD平分(三角形的一个外角等于和它不相邻的两个内角的和)在中(直角三角形的两个锐角互余)例
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年河南工业职业技术学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 2025年江西水利职业学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 专题03 句子(第3期)
- 专题04 世界古代史(易混易错点)
- 签订二手房买卖合同注意事项
- 民法租赁合同
- 安装灯具合同范本
- 装修工人员工劳动合同
- 渣土运输工程合同
- 直播销售策划合同
- 2025年人教五四新版八年级物理上册阶段测试试卷含答案
- 2025新人教版英语七年级下单词表(小学部分)
- 2025年春季1530安全教育记录主题
- 矿山2025年安全工作计划
- 2025年包装印刷项目可行性研究报告
- 给客户的福利合同(2篇)
- T-WAPIA 052.3-2023 无线局域网设备技术规范 第3部分:接入点和控制器
- 运动技能学习与控制完整
- Unit4MyfamilyStorytime(课件)人教新起点英语三年级下册
- 财务管理专业《生产实习》教学大纲
- 一年级口算天天练(可直接打印)
评论
0/150
提交评论