版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
SPSS操作:轻松实现1:1倾向性评分匹配(PSM)谈起临床研究,如何设立一个靠谱的对照,有时候成为整个研究成败的关键。对照设立的一个非常重要的原则就是可比性,简单说就是对照组除了研究因素外,其他的因素应该尽可能和试验组保持一致,这里就不得不提随机对照试验。众所周知,随机对照试验中研究对象是否接受干预是随机的,这就保证了组间其他混杂因素均衡可比。但是有些时候并不能实现随机化,比如说观察性研究。这时候倾向性评分匹配(propensityscorematching,PSM)可以有效降低混杂偏倚,并且在整个研究设计阶段,得到类似随机对照研究的效果。与常规匹配相比,倾向性评分匹配能考虑更多匹配因素,提高研究效率。这么“高大上”的倾向性评分匹配,是不是超级难学?错矣!今天就带大家轻松搞定1:1倾向性评分匹配。作为“稀罕”大招,并不是在所有版本的SPSS都可以实现倾向性评分匹配,仅在SPSS22及以上自带简易版PSM,对于其他版本或者想要体验完整版功能,就不得不去安装相应的软件(R软件、SPSSR插件、PSmatching插件。。。超级难安装!那是需要运气和耐心的!)。本次使用SPSS22为大家演示1:1倾向性评分匹配。一、问题与数据展开剩余89%某研究小白想搞明白吸烟和高血压之间的关系,准备利用某项调查的资料进一步随访研究吸烟和高血压的关联,该项研究包括233名吸烟者,949名不吸烟者。如果全部随访,研究小白感觉鸭梨山大,所以打算从中选取部分可比的个体进行随访。这两组人群一些主要特征的分布存在显著差异(见表1),现准备采用PS最邻近匹配法选取可比的个体作为随访对象。表1.两组基线情况比较(匹配前)二、SPSS分析方法1.数据录入(1)变量视图(2)数据视图2.倾向性评分匹配选择Data→PropensityScoreMatching,就进入倾向性评分匹配的主对话框。将分组变量Smoke放入GroupIndicator中(一般处理组赋值为“1”,对照组赋值为“0”);将需要匹配的变量放入Predictors中;NameforPropensityVariable为倾向性评分设定一个变量名PS;MatchTolerance用来设置倾向性评分匹配标准(学名“卡钳值”),这里设定为0.02,即吸烟组和不吸烟组按照倾向性评分±0.02进行1:1匹配(当然,卡钳值设置的越小,吸烟组和不吸烟组匹配后可比性越好,但是凡事有个度,太小的卡钳值也意味着匹配难度会加大,成功匹配的对子数会减少,需要综合考虑~~~);CaseID确定观测对象的ID;MatchIDVariableName设定一个变量,用来明确对照组中匹配成功的Match_ID;OutputDatasetName这里把匹配的观测对象单独输出一个数据集Match。3.Options设置VariableforNumberofEligibleCases设定一个变量,用来明确病例组中某一个观测对象,在对照组中有多少个观测对象满足与其匹配的条件,比如说病例组有一个观测对象PS=0.611,对照组可能有一个0.610,一个0.612。Sampling默认为不放回抽样。Giveprioritytoexactmatches优先考虑精确匹配,也就说病例组有一个观测对象PS=0.611,对照组也应该找到一个0.611。Maximizeexecutionperformance执行最优化操作,即系统会综合考虑精确匹配和模糊匹配(基于设定的卡钳值范围内匹配),系统默认勾选。Randomizecaseorderwhendrawingmatches整个匹配过程中,如果对照组有多个满足匹配条件的观测对象,那么SPSS会默认随机将其与病例组观测对象匹配。但是因为SPSS默认每次操作给对照组的随机数字不同,所以如果不特殊设定,每次实际匹配成功的对子是不一样的,也就说这一次对照组A匹配给病例组B,下一次就可能匹配给病例组C。所以需要自行设置,并且在RandomNumberSeed设定一个随机数种子,确保匹配过程可以重复。三、结果解读1.匹配结果表2以吸烟(1=吸烟;0=不吸烟)为因变量,以需要调整的变量为自变量构建logistic回归模型(表2),求出每个研究对象的PS值。表2.logistic回归模型表3显示,精确匹配45对,模糊匹配114对,共计匹配成功159对。表3.匹配结果表4主要是匹配过程。首先是精确匹配(即PS完全一致),匹配33663次,大约1%匹配成功;其次在精确匹配成功的前提下,进行PS的模糊匹配(PS±0.02,即最开始设定的卡钳值为0.02),匹配33618次,大约3.3%匹配成功。表4.匹配容许误差2.匹配后数据库输出的数据集Match中出现之前设定的几个新变量:E_case表示对照组中有几个符合匹配条件的观测对象(如图,吸烟组ID=2,有2个对照组观测对象符合匹配条件);PS是基于logistic回归模型计算出的倾向性评分;match_id表示匹配成功的ID。3.数据库整理A.筛选匹配成功的对子:选择Data→SelectCases→Ifconditionissatisfied:设定match_id≥1,筛选出匹配成功的对子→Output中输出新的数据集Analysis。B.确定匹配成功标识:match_id为吸烟组和不吸烟组相互匹配成功的ID,这里将不吸烟组match_id变量转换为ID变量,这时候相同的match_id即为匹配成功的对子。具体操作:将Analysis数据集中,不吸烟组match_id替换成ID编号:Transform→ComputeVariable→ifsmoke=0,match_id=ID→OKC.选择Data→Sortcases→按照匹配标识match_id排序(相同的match_id即为匹配成功的对子)→OK→Save(你的鼠标手一定要点保存!!!)倾向性评分匹配就搞定了,再来看看匹配情况。表5显示,原吸烟组233例,最后共有159例匹配成功(这次我们限定PS≤0.02,但可根据实际情况选择合适的限定,增加匹配成功数!),各匹配因素在两组间都均衡可比。表5.两组基线情况比较(匹配后)四、总结和拓展PSM一般分为三种类型:1、PS最邻近匹配:是PSM最基本的方法,即直接从对照中寻找一个或多个与处理组个体PS值相同或相近的个体作为配比对象。本次我们就采用的是这个方法。2、分层PSM:PS最邻近匹配尽管可以使协变量总体趋于平衡,但不能保证每个协变量分布完全一致。可以根据某个重要变量(如性别)分层后,分别对每层人群进行PS最邻近匹配,然后再将配比人群合并,这样就可以保证该重要变量在组间分布完全一致。3、与马氏配比结合的PSM:PSM与马氏配比结合后可以增加个别重点变量平衡能力,实现过程比较复
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度智慧社区安防系统安装合同范本张奇3篇
- 二零二五版投资担保合同3篇
- 二零二五年度生态农业园合作开发与销售合同3篇
- 二零二五年度高速公路绿化带植被恢复合同4篇
- 德佑二零二五版房屋租赁合同范本6篇
- 二零二五年度货物买卖与供应链合作协议2篇
- 2025版旅游车辆租赁与景区导览服务合同4篇
- 二零二五年金融机构股东撤资条款合同范本3篇
- 2025年校园绿化与校园生态旅游合作合同3篇
- 二零二五版农业科技项目合作合同4篇
- 二零二五年度无人驾驶车辆测试合同免责协议书
- 北京市海淀区2024-2025学年高一上学期期末考试历史试题(含答案)
- 2023中华护理学会团体标准-注射相关感染预防与控制
- JB∕T 14089-2020 袋式除尘器 滤袋运行维护技术规范
- 陕西省宝鸡市各县区乡镇行政村村庄村名居民村民委员会明细及行政区划代码
- 中华人民共和国职业分类大典电子版
- 毕业设计小型液压机主机结构设计与计算
- 19XR开机运行维护说明书
- 全国非煤矿山分布
- 临床研究技术路线图模板
- GB∕T 2099.1-2021 家用和类似用途插头插座 第1部分:通用要求
评论
0/150
提交评论