版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(测试时间:120分钟满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,在四面体ABCD中,若M,N,P分别为线段AB,BC,CD的中点,则直线BD与平面MNP的位置关系为 ()A.平行 B.可能相交 C.相交或BD⊂平面MNP D.以上都不对解析:显然BD⊄平面MNP,∵N,P分别为BC,DC中点,∴NP∥BD,而NP⊂平面MNP,∴BD∥平面MNP.答案:A2.已知m,n是两条直线,α,β是两个平面.有以下命题:①m,n相交且都在平面α,β外,m∥α,m∥β,n∥α,n∥β,则α∥β;②若m∥α,m∥β,则α∥β;③若m∥α,n∥β,m∥n,则α∥β.其中正确命题的个数是()A.0 B.1 C.2 D.3答案:B3.已知a,b,c为三条不重合的直线,α,β,γ为三个不重合的平面,则下列五个命题中正确的命题有()①a∥c,b∥c⇒a∥b;②a∥γ,b∥γ⇒a∥b;③c∥α,c∥β⇒α∥β;④c∥α,a∥c⇒a∥α;⑤a∥γ,α∥γ⇒a∥α.A.1个 B.2个 C.3个 D.5个解析:由公理4知①正确;②错误,a与b可能相交;③错误,α与β可能相交;④错误,可能有a⊂α;⑤错误,可能有a⊂α.答案:A4.设平面α∥平面β,点A∈α,点B∈β,C是AB的中点,当点A,B分别在平面α,β内运动时,则所有的动点C()A.不共面B.不论点A,B如何移动,都共面C.当且仅当点A,B分别在两条直线上移动时才共面D.当且仅当点A,B分别在两条给定的异面直线上移动时才共面解析:动点C移动的轨迹一定是在平面α与β之间且与它们等距离的一个平面.答案:B5.已知a,b表示直线,α,β,γ表示平面,则下列推理正确的是 ()A.α∩β=a,b⊂α⇒a∥bB.α∩β=a,a∥b⇒b∥α且b∥βC.a∥β,b∥β,a⊂α,b⊂α⇒α∥βD.α∥β,α∩γ=a,β∩γ=b⇒a∥b答案:D6.下列说法正确的是()A.平行于同一条直线的两个平面平行B.平行于同一个平面的两个平面平行C.一个平面内有三个不共线的点到另一个平面的距离相等,则这两个平面平行D.若三直线a,b,c两两平行,则在过直线a的平面中,有且只有一个平面与b,c均平行解析:平行于同一条直线的两个平面可以平行也可以相交,所以A错;B正确;C中没有指明这三个点在平面的同侧还是异侧,不正确;D不正确,因为过直线a的平面中,只要b,c不在其平面内,则与b,c均平行.答案:B7.在长方体ABCD-A1B1C1D1中,若经过D1B的平面分别交AA1和CC1于点E,F,则四边形D1EBF的形状是 ()A.矩形 B.菱形 C.平行四边形 D.正方形解析:答案:C8.已知平面α∥平面β,过平面α内的一条直线a的平面γ,与平面β相交,交线为直线b,则a,b的位置关系是()A.平行 B.相交C.异面 D.不确定解析:选A由面面平行的性质定理可知选项A正确.9.过平面α外的直线l,作一组平面与α相交,如果所得的交线为a,b,c,…,则这些交线的位置关系为()A.都平行B.都相交且一定交于同一点C.都相交但不一定交于同一点D.都平行或交于同一点解析:选D∵l⊄α,∴l∥α或l∩α=A,若l∥α,则由线面平行性质定理可知,l∥a,l∥b,l∥c,…,∴由公理可知,a∥b∥c…;若l∩α=A,则A∈a,A∈b,A∈c,…,a∩b∩c=A.10.在正方体ABCD-A1B1C1D1中,若经过D1B的平面分别交AA1和CC1于点E、F,则四边形D1EBFA.矩形 B.菱形C.平行四边形 D.正方形解析:选C因为平面和左右两个侧面分别交于ED1、BF,所以ED1∥BF,同理D1F∥EB,所以四边形D1EBF11.设平面α∥平面β,A∈α,B∈β,C是AB的中点,当A,B分别在α,β内运动时,那么所有的动点C()A.不共面B.当且仅当A,B在两条相交直线上移动时才共面C.当且仅当A,B在两条给定的平行直线上移动时才共面D.不论A,B如何移动都共面解析:选D由面面平行的性质,不论A、B如何运动,动点C均在过点C且与α、β都平行的平面上.12.下列说法正确的是()A.平行于同一条直线的两个平面平行B.平行于同一个平面的两个平面平行C.一个平面内有三个不共线的点到另一个平面的距离相等,则这两个平面平行D.若三直线a,b,c两两平行,则在过直线a的平面中,有且只有一个平面与b,c均平行解析:选B平行于同一条直线的两个平面可以平行也可以相交,所以A错;B正确;C中没有指明这三个点在平面的同侧还是异侧,不正确;D不正确,因为过直线a的平面中,只有b,c不在其平面内,则与b,c均平行.第Ⅱ卷(共90分)二、填空题(本大题共4小题,每题5分,满分20分,将答案填在答题纸上)13.如图所示,已知A,B,C,D四点不共面,且AB∥平面α,CD∥α,AC∩α=E,AD∩α=F,BD∩α=H,BC∩α=G,则四边形EFHG的形状是.
14.如图,P是△ABC所在平面外一点,平面α∥平面ABC,α分别交线段PA,PB,PC于A',B',C',若PA'∶AA'=2∶3,则QUOTE=.
答案:QUOTE15.若直线l不存在与平面α内无数条直线都相交的可能,则直线l与平面α的关系为.
解析:若直线l与平面α相交或在平面α内,则在平面α内一定存在无数条直线与直线l相交,故要使l不可能与平面α内无数条直线都相交,只有l∥α.答案:l∥α16.如图所示,ABCD-A1B1C1D1是棱长为a的正方体,M,N分别是下底面的棱A1B1,B1C1的中点,P是上底面的棱AD上的一点,AP=QUOTE,过P,M,N的平面交上底面于PQ,Q在CD上,则PQ=.
解析:∵MN∥平面AC,平面PMN∩平面AC=PQ,∴MN∥PQ.∵MN∥A1C1∥AC,∴PQ∥AC.∵AP=QUOTE,∴DP=DQ=QUOTE.∴PQ=QUOTEa·QUOTEa.答案:QUOTEa三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点.问:当点Q在什么位置时,平面D1BQ∥平面PAO?解:当Q为CC1的中点时,平面D1BQ∥平面PAO.证明如下:∵Q为CC1的中点,P为DD1的中点,∴QB∥PA.∵P,O分别为DD1,DB的中点,∴D1B∥PO.∴D1B∥面PAO,QB∥面PAO.又D1B∩QB=B,∴平面D1BQ∥平面PAO.18.如图是一个以△A1B1C1为底面的直三棱柱被一平面所截得的几何体,截面为△ABC.已知AA1=4,BB1=2,CC1=3.在边AB上是否存在一点O,使得OC∥平面A1B1C1?解:存在.取AB的中点O,连接OC.19.如图所示:ABC-A1B1C1中,平面ABC∥平面A1B1C1,若D是棱CC1的中点,在棱AB上是否存在一点E,使DE∥平面AB1解:当点E为棱AB的中点时,∵DE⊂平面EFD.∴DE∥平面AB1C120.如图,在直三棱柱ABC-A1B1C1中,D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA1.求证:CD=C1证明:如图,连接AB1,设AB1与BA1交于点O,连接OD.∵PB1∥平面BDA1,PB1⊂平面AB1P,平面AB1P∩平面BDA1=OD,∴OD∥PB1.又AO=B1O,∴AD=PD.又AC∥C1P,∴CD=C1D.21.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,E,E1分别是棱AD,AA1的中点,设F是棱AB的中点,证明:直线EE1∥平面FCC1证明:如图,取A1B1的中点为F1.故EE1∥平面FCC1.22.如图,正方体ABCD-A1B1C1D1中,M,N,E,F分别是棱A1B1,A1D1,B1C1,C1D求证:平面AMN∥平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GH/T 1440-2023黑蒜
- 中考文言文复习资料大全课外文言文冲刺课件
- 不等式证明复习课课件
- 单位管理制度合并选集职员管理篇十篇
- 单位管理制度分享合集【职员管理篇】
- 《诗歌鉴赏表达技巧》课件
- 《企力管理咨询》课件
- 单位管理制度呈现大全【职员管理篇】
- 《转基因生物安全性》课件
- 4S店维修安全管理制度
- 2024年度陶瓷产品代理销售与品牌战略合作协议3篇
- ISO 56001-2024《创新管理体系-要求》专业解读与应用实践指导材料之9:“5领导作用-5.3创新战略”(雷泽佳编制-2025B0)
- 2024年7月国家开放大学法学本科《知识产权法》期末考试试题及答案
- 2024年河南省公务员录用考试《行测》试题及答案解析
- (2024年)剪映入门教程课件
- 四年级上册道法知识点汇总
- 锅炉超温超压考核管理办法
- 供应链管理中的分销环节培训课件
- JGJ_T491-2021装配式内装修技术标准(高清-最新版)
- 最新中石油带压作业技术规程
- 南京华兴数控产品说明书
评论
0/150
提交评论