版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省抚顺市艺术中学高一数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在中,角所对应的边分别为,则是的充分必要条件
充分非必要条件必要非充分条件
非充分非必要条件参考答案:A2.函数的最大值与最小值之和等于
.参考答案:2略3.函数的图象过定点(
)A.(1,2)
B.(2,1) C.(-2,1) D.(-1,1)参考答案:D4.已知函数在处取得极值,则实数a=(
)A.-2
B.2
C.0
D.1参考答案:A由题意知函数f(x)的定义域为,由可得,函数在处取得极值,,,经检验时函数在处取得极大值,故选A.
5.如图,圆C内切于扇形AOB,∠AOB=,若在扇形AOB内任取一点,则该点在圆C内的概率为() A. B. C. D. 参考答案:B由题意知本题是一个等可能事件的概率,设圆C的半径为r,试验发生包含的事件对应的是扇形AOB,满足条件的事件是圆,其面积为⊙C的面积=π?r2,连接OC,延长交扇形于P.由于CE=r,∠BOP=,OC=2r,OP=3r,则S扇形AOB==;∴⊙C的面积与扇形OAB的面积比是.∴概率P=,故选B.6.若函数y=ax﹣x﹣a有两个零点,则a的取值范围是()A.(1,+∞) B.(0,1) C.(0,+∞) D.?参考答案:A【考点】函数零点的判定定理.【分析】分当0<a<1时及当a>1时讨论,结合函数的单调性及取值范围,运用函数零点的判定定理确定个数即可.【解答】解:①当0<a<1时,易知函数y=ax﹣x﹣a是减函数,故最多有一个零点,故不成立;②当a>1时,y′=lna?ax﹣1,故当ax<时,y′<0;当ax>时,y′>0;故y=ax﹣x﹣a在R上先减后增,且当x→﹣∞时,y→+∞,当x→+∞时,y→+∞,且当x=0时,y=1﹣0﹣a<0;故函数y=ax﹣x﹣a有两个零点;故成立;故选A.7.设,,,则(
)A.
B.
C.
D.参考答案:D由对数函数的性质可得,,由指数函数的可得,,故选D.
8.如图,在平行四边形ABCD中,=(3,2),=(﹣1,2),则?等于()A.1 B.6 C.﹣7 D.7参考答案:D【考点】平面向量数量积的运算.【分析】利用平行四边形的性质,表示出向量,从而求出数量积【解答】解:∵=+=(3,2),=﹣=(﹣1,2),∴2=(2,4),∴=(1,2),∴?=(3,2)?(1,2)=3+4=7,故选:D9.已知函数f(x)是定义在R上的偶函数,当x≥0时,,若函数g(x)=5[f(x)]2﹣(5a+6)f(x)+6a(a∈R)有且仅有6个不同的零点,则实数a的取值范围()A. B. C. D.参考答案:A【考点】函数奇偶性的性质.【分析】由g(x)=0,可得f(x)=或f(x)=a,利用函数f(x)是定义在R上的偶函数,当x≥0时,,可得f(x)=有4个零点,则f(x)=a有2个不同的零点,即可得出结论.【解答】解:由g(x)=0,可得f(x)=或f(x)=a,∵函数f(x)是定义在R上的偶函数,当x≥0时,,∴f(x)=有4个零点,则f(x)=a有2个不同的零点,∵,∴0<a<1,a=时,f(x)=a有2个不同的零点,即±1,故选A.10.已知函数,,设函数,且函数的零点均在区间内,则的最小值为()A.11
B.10
C.9
D.8参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.如图,在四面体ABCD中,AB⊥平面BCD,△BCD是边长为6的等边三角形.若AB=4,则四面体ABCD外接球的表面积为
.参考答案:12.化简=
参考答案:13.已知直线l1:2x+(m+1)y+4=0,直线l2:mx+3y+4=0,若l1∥l2,则实数m=.参考答案:﹣3【考点】直线的一般式方程与直线的平行关系.【分析】l1∥l2,可得,解得m即可得出.【解答】解:直线l1:2x+(m+1)y+4=0,直线l2:mx+3y+4=0,∵l1∥l2,∴,(m+1≠0),解得m=﹣3.故答案为:﹣3.14.正方体的表面积与其内切球表面积的比为
.参考答案:6:∏略15.一个水平放置的平面图形的斜二测直观图是直角梯形ABCD,如图所示,∠ABC=45°,AB=AD=1,DC⊥BC,这个平面图形的面积为______.参考答案:16.函数的定义域为_____.参考答案:[-1,3]【详解】由题意得,即定义域为.17.已知数列{an}中,an≠0,a1=1,则a20的值为.参考答案:【考点】数列递推式.【分析】依题意,可判定数列{}是以1为首项,2为公差的等差数列,从而可求得a20的值.【解答】解:∵,∴数列{}是以1为首项,2为公差的等差数列,∴=1+(n﹣1)×2=2n﹣1,∴a20==,故答案为:.【点评】本题考查数列递推式的应用,判定数列{}是以1为首项,2为公差的等差数列是关键,属于中档题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分13分)设,(1)若,求a的值;(2)若,求a的值;(3)是否存在实数a使,若存在,求a的值。若不存在,请说明理由。参考答案:解:(1)(2)∵,∴1和2至少有一个是A的元素,(3)19.某单位建造一间背面靠墙的房屋,地面面积为30,房屋正面每平方米造价为1500元,房屋侧面每平方米造价为900元,屋顶造价为5800元,墙高为3米,且不计算背面和地面的费用,问怎样设计房屋能使总造价最低?最低总造价是多少?参考答案:房屋正面长为6m,侧面宽为5m时,总造价最低为59800元.【分析】令房屋地面的正面长为,侧面宽为,总造价为元,求出z的表达式,再利用基本不等式求最低造价.【详解】令房屋地面的正面长为,侧面宽为,总造价为元,则,,∵,∴,当且仅当即时取等号,答:房屋正面长6,侧面宽为5时,总造价最低为59800元.【点睛】本题主要考查基本不等式的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.已知数列{an}中,,.(1)令,求证:数列{bn}为等比数列;(2)求数列{an}的通项公式;(3)令,Sn为数列{cn}的前n项和,求Sn.参考答案:(1)见解析(2)(3)【分析】(1)计算,得证数列为等比数列.(2)先求出的通项公式,再计算数列的通项公式.(3)计算,根据错位相减法和分组求和法得到答案.【详解】(1),,,故数列是以为首项,以为公比的等比数列.(2)由(1)知,由,得数列的通项公式为.(3)由(2)知,记.有.两式作差得,得,则.【点睛】本题考查了数列的证明,数列通项公式,分组求和,错位相减法,意在考查学生的计算能力.21.某工厂的A、B、C三个不同车间生产同一产品的数量(单位:件)如表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测.车间ABC数量50150100(1)求这6件样品中来自A、B、C各车间产品的数量;(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件商品来自相同车间的概率.参考答案:【考点】古典概型及其概率计算公式.【专题】概率与统计.【分析】(1)求出样本容量与总体中的个体数的比,然后求解A、B、C各车间产品的数量.(2)设6件来自A、B、C三个车间的样品分别为:A;B1,B2,B3;C1,C2.写出从6件样品中抽取的这2件产品构成的所有基本事件.记事件D:“抽取的这2件产品来自相同车间”,写出事件D包含的基本事件,然后求解这2件产品来自相同车间的概率.【解答】(本小题满分12分)解:(1)因为样本容量与总体中的个体数的比是,(2分)[来源:学#科#网]所以A车间产品被选取的件数为,(3分)B车间产品被选取的件数为,(4分)C车间产品被选取的件数为.(5分)(2)设6件来自A、B、C三个车间的样品分别为:A;B1,B2,B3;C1,C2.则从6件样品中抽取的这2件产品构成的所有基本事件为:(A,B1),(A,B2),(A,B3),(A,C1),(A,C2),(B1,B2),(B1,B3),(B1,C1),(B1,C2),(B2,B3),(B2,C1),(B2,C2),(B3,C1),(B3,C2),(C1,C2),共15个.(8分)每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件产品来自相同车间”,则事件D包含的基本事件有:(B1,B2),(B1,B3),(B2,B3),(C1,C2),共4个.(10分)所以,即这2件产品来自相同车间的概率为.(12分)【点评】本题考查古典概型概率的应用,等可能事件的概率的求法,基本知识的考查.22.某算法的程序框图如图所示,其中输入的变量J在1,2,3,…,30这30个整数中等可能随机产生.(1)分别求出(按程序框图正确编程运行时)输出y的值为i的概率Pi(i=1,2,3);(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数,下面是甲、乙所作频数统计表的部分数据:甲的频数统计表(部分)运行次数输出y=1的频数输出y=2的频数输出y=3的频数3016113…………2000967783250乙的频数统计表(部分)运行次数输出y=1的频数输出y=2的频数输出y=3的频数3013134…………2000998803199当n=2000时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断甲、乙中谁所编写的程序符合算法要求的可能性较大.参考答案:见解析【考点】设计程序框图解决实际问题;离散型随机变量的期望与方差.【专题】计算题;图表型;概率与统计;算法和程序框图.【分析】(1)由题意可得,变量x是从1,2,3,…30这30个整数中可能随机产生的一个数,共有30中结果,当变量x从1,3,5,7,9,11,13,15,17,19,21,23,25,27,29这15个整数中产生时,输出y的值为1,所以P1=,当变量x从2,4,6,8,12,14,16,18,22,24,26,28这12个整数中产生时,输出原点值为2,所以P2=,当变量x从10,20,30这3个整数中产生时,输出y的值为3,所以P3=.…(2)当n=2000时,列出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率的表格,再比较频率趋势与概率,即可得解.【解答】(本题满分10分)解:(1)由题意可得,变量x是从1,2,3,…30这30个整数中可能随机产生的一个数,共有30中结果,当变量x从1,3,5,7,9,11,13,15,17,19,21,23,25,27,29这15个整数中产生时,输出y的值为1,所以P1=,当变量x从2,4,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度绿色能源项目投资定金合同附属协议书2篇
- 二零二五年度权威解读!欠条法律风险防范及处理合同3篇
- 二零二五年度白酒定制生产与品牌发展合同2篇
- 二零二五年度高铁安装工程设备磨损保险合同2篇
- 2025年度西餐厅经营管理权租赁合同3篇
- 二零二五年度航空货运代理航空货物包装材料供应合同3篇
- 展会展台拆除合同(2篇)
- 小区道路工程承包合同(2篇)
- 2025年餐饮食材配送与售后服务合同协议3篇
- 二零二五年度航空航天零部件耗材采购合同范本3篇
- 幼儿园反恐防暴技能培训内容
- 食品企业质检员聘用合同
- 中医诊所内外部审计制度
- 自然辩证法学习通超星期末考试答案章节答案2024年
- 2024年国家危险化学品经营单位安全生产考试题库(含答案)
- 护理员技能培训课件
- 家庭年度盘点模板
- 河南省郑州市2023-2024学年高二上学期期末考试 数学 含答案
- 2024年资格考试-WSET二级认证考试近5年真题集锦(频考类试题)带答案
- 试卷中国电子学会青少年软件编程等级考试标准python三级练习
- 公益慈善机构数字化转型行业三年发展洞察报告
评论
0/150
提交评论