版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省汕尾市市城区捷胜文昌中学2022年高二数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下面使用类比推理恰当的是()A.“若a?3=b?3,则a=b”类推出“若a?0=b?0,则a=b”B.“若(a+b)c=ac+bc”类推出“(a?b)c=ac?bc”C.“(a+b)c=ac+bc”类推出“=+(c≠0)”D.“(ab)n=anbn”类推出“(a+b)n=an+bn”参考答案:C【考点】归纳推理.【分析】判断一个推理过程是否是类比推理关键是看他是否符合类比推理的定义,即是否是由特殊到与它类似的另一个特殊的推理过程.另外还要看这个推理过程是否符合实数的性质.【解答】解:对于A:“若a?3=b?3,则a=b”类推出“若a?0=b?0,则a=b”是错误的,因为0乘任何数都等于0,对于B:“若(a+b)c=ac+bc”类推出“(a?b)c=ac?bc”,类推的结果不符合乘法的运算性质,故错误,对于C:将乘法类推除法,即由“(a+b)c=ac+bc”类推出“=+”是正确的,对于D:“(ab)n=anbn”类推出“(a+b)n=an+bn”是错误的,如(1+1)2=12+12故选C2.如图甲是某条公共汽车线路收支差额与乘客量的图象(收支差额=车票收入—支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)是不改变车票价格,减少支出费用;建议(Ⅱ)是不改变支出费用,提高车票价格.下面给出四个图象:在这些图象中A.①反映了建议(Ⅱ),③反映了建议(Ⅰ)B.①反映了建议(Ⅰ),③反映了建议(Ⅱ)C.②反映了建议(Ⅰ),④反映了建议(Ⅱ)D.④反映了建议(Ⅰ),②反映了建议(Ⅱ)参考答案:B3.若在直线上存在不同的三个点,使得关于实数的方程
有解(点不在上),则此方程的解集为(
)A.
B.
C.
D.
参考答案:D4.下列函数中,最小值为4的是(
)A.
B.C.
D.参考答案:C略5.以下三个命题:①分别在两个平面内的直线一定是异面直线;②过平面的一条斜线有且只有一个平面与垂直;③垂直于同一个平面的两个平面平行.其中真命题的个数是A.0
B.1
C.2
D.3参考答案:B6.“”是“”的(
)A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件参考答案:A7.若直线x﹣y﹣m=0被圆x2+y2﹣8x+12=0所截得的弦长为,则实数m的值为()A.2或6 B.0或8 C.2或0 D.6或8参考答案:A【考点】直线与圆的位置关系.【专题】计算题;方程思想;综合法;直线与圆.【分析】由已知得圆心(4,0)到直线x﹣y﹣m=0的距离d==,即可求出实数m的值.【解答】解:x2+y2﹣8x+12=0,可化为(x﹣4)2+y2=4∵直线x﹣y﹣m=0被圆x2+y2﹣8x+12=0所截得的弦长为,∴圆心(4,0)到直线x﹣y﹣m=0的距离d===,∴解得m=2或6,故选:A.【点评】本题考查实数值的求法,是基础题,解题时要注意圆的性质和点到直线的距离公式的合理运用.8.给定两个命题p,q,若﹁p是q的必要而不充分条件,则p是﹁q的A.充分而不必要条件
B.必要而不充分条件C.充要条件
D.既不充分也不必要条件参考答案:A略9.在如图所示的“茎叶图”表示的数据中,众数和中位数分别(
)A.26与30
B.24与30
C.23与26
D.31与26参考答案:D10.若复数满足,则=(
)(A)
(B)
(C)
(D)参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.在中当m=
时面积最大。参考答案:略12.设数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),则数列{}的前10项的和为.参考答案:【考点】数列的求和;数列递推式.【专题】等差数列与等比数列.【分析】数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),利用“累加求和”可得an=.再利用“裂项求和”即可得出.【解答】解:∵数列{an}满足a1=1,且an+1﹣an=n+1(n∈N*),∴当n≥2时,an=(an﹣an﹣1)+…+(a2﹣a1)+a1=n+…+2+1=.当n=1时,上式也成立,∴an=.∴=2.∴数列{}的前n项的和Sn===.∴数列{}的前10项的和为.故答案为:.【点评】本题考查了数列的“累加求和”方法、“裂项求和”方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.13.函数()的递减区间为__
.
参考答案:略14.函数y=xlnx的导数是_____。参考答案:lnx+1;略15.设有一个等边三角形网格,其中各个最小等边三角形的边长都是4cm,现用直径等于2cm的硬币投掷到此网格上,求硬币落下后与格线没有公共点的概率参考答案:16.对于三次函数,定义:是函数的导数的导数,若方程有实数解,则称点为函数的“拐点”.有同学发现:任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是“对称中心”.请你将这一发现作为条件,则函数的对称中心为__________.参考答案:,,令,得.又,所以的对称中心为.17.函数f(x)=﹣x2+2ax与g(x)=在区间(1,2)上都单调递减,则实数a的取值范围是
.参考答案:(﹣1,1]【考点】函数单调性的性质.【分析】分别利用二次函数、反比例函数的单调性,确定a的范围,即可得出结论.【解答】解:∵f(x)=﹣x2+2ax的图象是开口朝下,以x=a为对称轴的抛物线,f(x)=﹣x2+2ax在区间[1,2]上是减函数,∴a≤1①;∵g(x)==﹣a+在区间(1,2)上都单调递减,∴有a+1>0,解得a>﹣1②;综①②,得﹣1<a≤1,即实数a的取值范围是(﹣1,1].故答案为:(﹣1,1].三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知椭圆的中心为坐标原点,一个长轴端点为,短轴端点和焦点所组成的四边形为正方形,若直线与轴交于点,与椭圆交于不同的两点,且。(14分)(1)
求椭圆的方程;(2)
求实数的取值范围。参考答案:(1)解:∵a=1,∴(2)当K不存在时,不符题意,K=0时也不符题意
设l:y-m=kx
∴y=kx+m∴
消去得略19.已知函数在上是减函数,在上是增函数,函数在上有三个零点,且1是其中一个零点.(1)求的值;(2)求的取值范围;(3)试探究直线与函数的图像交点个数的情况,并说明理由.参考答案:(1)解:∵,∴.∵在上是减函数,在上是增函数,∴当时,取到极小值,即.∴.(2)解:由(1)知,,∵1是函数的一个零点,即,∴.∵的两个根分别为,.∵在上是增函数,且函数在上有三个零点,∴,即.∴.故的取值范围为.ks**5u(3)解:由(2)知,且.要讨论直线与函数图.点个数情况,即求方程组解的个数情况.由,得.即.即.∴或.由方程,
(*)得.∵,若,即,解得.此时方程(*)无实数解.若,即,解得.此时方程(*)有一个实数解.若,即,解得.此时方程(*)有两.解,分别为,.且当时,,.ks**5u综上所述,当时,直线与函数.像有一个交点.当或时,直线与函数的图像有二个交点.当且时,直线与函数的图像有三个交点.略20.甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球三次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.(Ⅰ)求乙获胜的概率;(Ⅱ)求投篮结束时乙只投了2个球的概率.参考答案:【考点】相互独立事件的概率乘法公式;概率的基本性质.【分析】(Ⅰ)分别求出乙第一次投球获胜的概率、乙第二次投球获胜的概率、乙第三次投球获胜的概率,相加即得所求.(Ⅱ)由于投篮结束时乙只投了2个球,说明第一次投球甲乙都没有投中,第二次投球甲没有投中、乙投中,或第三次投球甲投中了,把这两种情况的概率相加,即得所求.【解答】解:(Ⅰ)∵乙第一次投球获胜的概率等于=,乙第二次投球获胜的概率等于??=,乙第三次投球获胜的概率等于=,故乙获胜的概率等于++=.(Ⅱ)由于投篮结束时乙只投了2个球,说明第一次投球甲乙都没有投中,第二次投球甲没有投中、乙投中,或第三次投球甲投中了.故投篮结束时乙只投了2个球的概率等于
+×=.21.(本小题满分12分)已知命题:“方程对应的曲线是圆”,命题:“双曲线的两条渐近线的夹角为”.若这两个命题中只有一个是真命题,求实数的取值范围.参考答案:若真,由得:. 若真,由于渐近线方程为,由题,或,得:或.真假时,;假真时,.所以. …………………12分22.(13分)迎新春,某公司要设计如右图所示的一张矩形广告,该广告含有大小相等的左中右三个矩形栏目,这三栏的面积之和为,四周空白的宽度为,栏与栏之间的中缝空白的宽度为,怎样确定每个矩形栏目高与宽的尺寸(单位:),能使整个矩形广告面积最小.参考答案:设矩形栏目的高为,宽为,则,.……(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国成型炉行业投资前景及策略咨询研究报告
- 2024至2030年变速操纵杆总成项目投资价值分析报告
- 2024至2030年混凝土养护保湿布项目投资价值分析报告
- 2024至2030年小包装茶项目投资价值分析报告
- 工厂企业供暖合同模板
- 网约车平台用户合同
- 预采购合同的合同质量控制措施
- 空调招标文件合同格式
- 解除协议合作合同
- 资深专家品牌策划服务合同
- 《精益生产之ECRS分析法》课件
- DL∕T 325-2010 电力行业职业健康监护技术规范
- 大班科学《各种各样的飞机》课件教案
- 老年个人健康状况分析报告模板5-12-16
- 新《事业单位财务规则》培训讲义0
- 2024下半年黑龙江伊春市事业单位公开招聘工作人员181人重点基础提升难、易点模拟试题(共500题)附带答案详解
- 2024土石坝安全监测技术规范
- 【课件】2024届高三英语高考前指导最后一课(放松心情)课件
- 2024年河南投资集团有限公司招聘笔试冲刺题(带答案解析)
- 2024年中国长航校园招聘79人公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 配件供应技术服务和质保期服务计划方案
评论
0/150
提交评论