




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
33)33)1•设有矩形截面的竖柱,其密度为Q,在一边侧面上受均布剪力q,如图1,试求应力分量。解:采用半逆解法,设cx=0。导出申使其满足双调和方程:a2申却c=—Xx二0,二f(x)xay2ay申二yf(x)+f(x)a4申ax4a4申ay41d4f(x)d4f(x)y+1-dx4dx40,竺二0dx2dy2d4f(x)丄d4f(x)0+i二0dx4dx4y取任意值时,上式都应成立,因而有d4f(x)二0d4f\x)二0dx4dx4f(x)=Ax3+Bx2+Cx,f(x)=Ex3+Fx21申=y(Ax3+Bx2+Cx)+Ex3+Fx21)式中,,(x)中略去了常数项,f(x)中略去Yx的一次项与常数项,因为它们对应力无影响含待定常数的应力分量为:二空-Xx=0ay2c二空—Yy二y(6Ax+2B)+6Ex+2F-Py>yax2t二-空=-(3Ax2+2Bx+C)xyaxy利用边界条件确定常数,并求出应力解答:(c)_=0,(t丿冋爼C=0能自然满足:(/)=0,能自然满足:xx=h(t)=q,—3Ah2一2Bh=qyxx=h(c)=0,6Ex+2F=0,E1=/加=0yy=02)44)44)#/43为什么在主要边界(占边界绝大部分)上必须满足精确的应力边界条件,教材中式(2-15),而在次要边界(占边界很小部分)上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替?如果在主要边界上用三个积分的应力边界条件代替教材中式(2-15),将会发生什么问题?解:弹性力学问题属于数学物理方程中的边值问题,而要边界条件完全得到满足,往往遇到很大的困难。这时,圣维南原理可为简化局部边界上的应力边界条件提供很大的方便。将物体一小部分边界上的面力换成分布不同,但静力等效的面力(主矢、主矩均相同),只影响近处的应力分布,对远处的应力影响可以忽略不计。如果在占边界绝大部分的主要边界上用三个应力边界条件来代替精确的边界
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度事业单位聘用合同解除材料归档与信息安全保密服务合同
- 科技企业如何借鉴网易云音乐的营销策略
- 健身中心与健身房加盟商合作协议书(2025年度)
- 二零二五年度医院招聘合同与人才引进政策协议
- 2025年度智慧社区安防监控系统维修保养合同
- 二零二五年度工厂生产工人劳动保障及福利合同
- 2025至2030年中国经弹灯芯绒面料数据监测研究报告
- 2025年度高空作业包工头与工人安全责任合同样本
- 二零二五年度婚恋纠纷财产分割赔偿合同
- 二零二五年度公司免责的酒店经营管理协议
- 高中校长在2025春季开学典礼上的讲话
- 2025年六年级数学下册春季开学第一课(人教版) 2024-2025学年 典型例题系列(2025版)六年级数学下册(人教版) 课件
- 2025年浙江省台州机场管理有限公司招聘笔试参考题库含答案解析
- 1.2 男生女生 (课件)2024-2025学年七年级道德与法治下册(统编版2024)
- 中央2025年公安部部分直属事业单位招聘84人笔试历年参考题库附带答案详解
- 2025年江苏医药职业学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2025年常德职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2024年公安部直属事业单位招聘笔试真题
- 民政局2025年度离婚协议书官方模板4篇
- 上海市2024-2025学年高一上学期期末考试数学试题(含答案)
- KCA数据库试题库
评论
0/150
提交评论