圆锥曲线中的仿射变换、非对称韦达、光学性质问题(原卷版)_第1页
圆锥曲线中的仿射变换、非对称韦达、光学性质问题(原卷版)_第2页
圆锥曲线中的仿射变换、非对称韦达、光学性质问题(原卷版)_第3页
圆锥曲线中的仿射变换、非对称韦达、光学性质问题(原卷版)_第4页
圆锥曲线中的仿射变换、非对称韦达、光学性质问题(原卷版)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题43圆锥曲线中的仿射变换、非对称韦达、光学性质问题【题型归纳目录】题型一:仿射变换问题题型二:非对称韦达问题题型三:椭圆的光学性质题型四:双曲线的光学性质题型五:抛物线的光学性质【方法技巧与总结】一、仿射变换问题仿射变换有如下性质:1、同素性:在经过变换之后,点仍然是点,线仍然是线;2、结合性:在经过变换之后,在直线上的点仍然在直线上;3、其它不变关系.我们以椭圆为例阐述上述性质.椭圆,经过仿射变换,则椭圆变为了圆,并且变换过程有如下对应关系:(1)点变为;(2)直线斜率变为,对应直线的斜率比不变;(3)图形面积变为,对应图形面积比不变;(4)点、线、面位置不变(平⾏直线还是平⾏直线,相交直线还是相交直线,中点依然是中点,相切依然是相切等);(5)弦长关系满足,因此同一条直线上线段比值不变,三点共线的比不变总结可得下表:变换前变换后方程横坐标纵坐标斜率面积弦长不变量平行关系;共线线段比例关系;点分线段的比二、非对称韦达问题在一元二次方程中,若,设它的两个根分别为,则有根与系数关系:,借此我们往往能够利用韦达定理来快速处理之类的结构,但在有些问题时,我们会遇到涉及的不同系数的代数式的应算,比如求或之类的结构,就相对较难地转化到应用韦达定理来处理了.特别是在圆锥曲线问题中,我们联立直线和圆锥曲线方程,消去或,也得到一个一元二次方程,我们就会面临着同样的困难,我们把这种形如或之类中的系数不对等的情况,这些式子是非对称结构,称为“非对称韦达”.三、光学性质问题1、椭圆的光学性质从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线经过椭圆的另一个焦点(如图1).【引理1】若点在直线的同侧,设点是直线上到两点距离之和最小的点,当且仅当点是点关于直线的对称点与点连线和直线的交点.【引理2】若点在直线的两侧,且点到直线的距离不相等,设点是直线上到点距离之差最大的点,即最大,当且仅当点是点关于直线的对称点与点连线的延长线和直线的交点.【引理3】设椭圆方程为,分别是其左、右焦点,若点在椭圆外,则.2、双曲线的光学性质从双曲线的一个焦点发出的光从双曲线的一个焦点发出的光线经过双曲线的另一个焦点(如图).【引理4】若点在直线的同侧,设点是直线上到两点距离之和最小的点,当且仅当点是点关于直线的对称点与点连线和直线的交点.【引理5】若点在直线的两侧,且点到直线的距离不相等,设点是直线上到点距离之差最大的点,即最大,当且仅当点是点关于直线的对称点与点连线的延长线和直线的交点.【引理6】设双曲线方程为,分别是其左、右焦点,若点在双曲线外(左、右两支中间部分,如图),则.3、抛物线的光学性质从抛物线的焦点发出的光线,经过抛物线上的一点反射后,反射光线与抛物线的轴平行(或重合).反之,平行于抛物线的轴的光线照射到抛物线上,经反射后都通过焦点.【结论1】已知:如图,抛物线,为其焦点,是过抛物线上一点的切线,是直线上的两点(不同于点),直线平行于轴.求证:.(入射角等于反射角)【结论2】已知:如图,抛物线,是抛物线的焦点,入射光线从点发出射到抛物线上的点,求证:反射光线平行于轴.【典例例题】题型一:仿射变换问题例1.(2022·全国·高三专题练习)MN是椭圆上一条不过原点且不垂直于坐标轴的弦,P是MN的中点,则_________,A,B是该椭圆的左右顶点,Q是椭圆上不与A,B重合的点,则_________.CD是该椭圆过原点O的一条弦,直线CQ,DQ斜率均存在,则_________.例2.(2022·全国·高三专题练习)如图,作斜率为的直线与椭圆交于两点,且在直线的上方,则△内切圆的圆心所在的定直线方程为__________________________.例3.(2022·全国·高三专题练习)Р是椭圆上任意一点,O为坐标原点,,过点Q的直线交椭圆于A,B两点,并且,则面积为______________.变式1.(2022·全国·高三专题练习)已知直线l与椭圆交于M,N两点,当______,面积最大,并且最大值为______.记,当面积最大时,_____﹐_______.Р是椭圆上一点,,当面积最大时,______.变式2.(2022·全国·高三专题练习)已知椭圆左顶点为,为椭圆上两动点,直线交于,直线交于,直线的斜率分别为且,(是非零实数),求______________.题型二:非对称韦达问题例4.(2022·全国·高三专题练习)已知椭圆的左、右焦点是,左右顶点是,离心率是,过的直线与椭圆交于两点P、Q(不是左、右顶点),且的周长是,直线与交于点M.(1)求椭圆的方程;(2)(ⅰ)求证直线与交点M在一条定直线l上;(ⅱ)N是定直线l上的一点,且PN平行于x轴,证明:是定值.例5.(2022·全国·高三专题练习)已知椭圆的离心率为,短轴长为.(1)求椭圆C的方程;(2)设A,B分别为椭圆C的左、右顶点,若过点且斜率不为0的直线l与椭圆C交于M、N两点,直线AM与BN相交于点Q.证明:点Q在定直线上.例6.(2022·全国·高三专题练习)点是椭圆的左右顶点若直线与椭圆交于M,N两点,求证:直线AM与直线的交点在一条定直线上.变式3.(2022·全国·高三专题练习)已知、分别是离心率的椭圆的左右项点,P是椭圆E的上顶点,且.(1)求椭圆E的方程;(2)若动直线过点,且与椭圆E交于A、B两点,点M与点B关于y轴对称,求证:直线恒过定点.变式4.(2022·全国·高三专题练习)已知椭圆:()过点,且离心率为.(1)求椭圆的方程;(2)记椭圆的上下顶点分别为,过点斜率为的直线与椭圆交于两点,证明:直线与的交点在定直线上,并求出该定直线的方程.题型三:椭圆的光学性质例7.(2022·全国·高三专题练习)如图①,椭圆的光学性质:从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线经过椭圆的另一个焦点.如图②,双曲线的光学性质:从双曲线的一个焦点发出的光线,经过双曲线反射后,反射光线的反向延长线经过双曲线的另一个焦点.如图③,一个光学装置由有公共焦点的椭圆与双曲线构成,已知与的离心率之比为.现一光线从右焦点发出,依次经与的反射,又回到了点,历时秒.将装置中的去掉,如图④,此光线从点发出,经两次反射后又回到了点,历时___________.秒例8.(2022·全国·高三专题练习)如图所示,椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.根据椭圆的光学性质解决下题:已知曲线的方程为,其左、右焦点分别是,,直线与椭圆切于点,且,过点且与直线垂直的直线与椭圆长轴交于点,则A. B. C. D.例9.(2022·全国·高三专题练习)圆锥曲线具有丰富的光学性质,从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线经过椭圆的另一个焦点.直线l:与椭圆C:相切于点P,椭圆C的焦点为,,由光学性质知直线,与l的夹角相等,则的角平分线所在的直线的方程为(

)A. B.C. D.题型四:双曲线的光学性质例10.(2022·全国·高三专题练习)双曲线的光学性质是:从双曲线一个焦点发出的光,经过双曲线反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点上.已知双曲线:的左、右焦点分别为,,从发出的光线射向上的点后,被反射出去,则入射光线与反射光线夹角的余弦值是(

)A. B. C. D.例11.(2022·全国·高三专题练习)根据圆锥曲线的光学性质,从双曲线的一个焦点发出的光线,经双曲线反射后,反射光线的反向延长线过双曲线的另一个焦点.由此可得,连双曲线上任意一点的切线,平分该点与两焦点连线的夹角.请解决下列问题:已知分别是双曲线C:的左.右焦点,若从发出的光线经双曲线右支上的点反射后,反射光线为射线AM,则的角平分线所在的直线的斜率为(

)A. B. C. D.题型五:抛物线的光学性质例12.(2022·全国·高三专题练习)抛物线有如下光学性质:由焦点射出的光线经抛物线反射后平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必经过抛物线的焦点.已知抛物线y2=4x的焦点为F,一平行于x轴的光线从点M(3,1)射入,经过抛物线上的点A反射后,再经抛物线上的另一点B射出,则直线AB的斜率为(

)A. B.-C.± D.-例13.(2022·全国·高三专题练习)抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线的焦点为F,一条平行于x轴的光线从点射出,经过抛物线上的点A反射后,再经抛物线上的另一点B射出,则的周长为(

)A. B. C. D.例14.(2022·全国·高三专题练习)已知:如图,抛物线,为其焦点,是过抛物线上一点的切线,是直线上的两点(不同于点),直线平行于轴.求证:.(入射角等于反射角)变式5.(2022·全国·高三专题练习)已知:如图,抛物线,是抛物线的焦点,入射光线从点发出射到抛物线上的点,求证:反射光线平行于轴.【过关测试】一、单选题1.(2022·全国·高三专题练习)椭圆满足这样的光学性质:从椭圆的一个焦点发射光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.现在设有一个水平放置的椭圆形台球盘,满足方程:,点A、B是它的两个焦点,当静止的小球放在点A处,从A点沿直线出发,经椭圆壁反弹后,再回到点A时,小球经过的最长路程是A.20 B.18 C.16 D.142.(2022·全国·高三专题练习)双曲线的光学性质为:从双曲线一个焦点发出的光,经过反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点上,若双曲线E的焦点分别为,,经过且与垂直的光线经双曲线E反射后,与成45°角,则双曲线E的离心率为(

)A. B. C. D.二、多选题3.(2022·全国·高三专题练习)椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点,是它的焦点,长轴长为,焦距为,静放在点的小球(小球的半径不计),从点沿直线出发,经椭圆壁反弹后第一次回到点时,小球经过的路程可以是(

)A. B. C. D.4.(2022·全国·高三专题练习)圆锥曲线的光学性质:从双曲线的一个焦点发出的光线,经双曲线反射后,反射光线的反向延长线过双曲线的另一个焦点.由此可得,过双曲线上任意一点的切线,平分该点与两焦点连线的夹角.请解决下面问题:已知、分别是双曲线的左、右焦点,点为在第一象限上的点,点在延长线上,点的坐标为,且为的平分线,则下列正确的是(

)A.B.C.点到轴的距离为D.的角平分线所在直线的倾斜角为三、填空题5.(2022·全国·高三专题练习)过椭圆的右焦点F的直线与椭圆交于A,B两点,则面积最大值为_______.6.(2022·全国·高三专题练习)已知A,B,C分别是椭圆上的三个动点,则面积最大值为_____________.7.(2022·全国·高三专题练习)已知椭圆,分别为椭圆左右焦点,过作两条互相平行的弦,分别与椭圆交于四点,若当两条弦垂直于轴时,点所形成的平行四边形面积最大,则椭圆离心率的取值范围为______________.8.(2022·全国·高三专题练习)古希腊数学家阿波罗尼奥斯在研究圆锥曲线时发现了它们的光学性质.比如椭圆,他发现如果把椭圆焦点F一侧做成镜面,并在F处放置光源,那么经过椭圆镜面反射的光线全部都会经过另一个焦点.设椭圆方程为其左、右焦点,若从右焦点发出的光线经椭圆上的点A和点B反射后,满足,则该椭圆的离心率为_________.四、解答题9.(2022·全国·高三专题练习)设椭圆C:的左焦点为F,过点F的直线与椭圆C相交于A,B两点,直线的倾斜角为60o,.(1)求椭圆C的离心率;(2)如果|AB|=,求椭圆C的方程.10.(2022·全国·高三专题练习)椭圆有两个顶点过其焦点的直线与椭圆交于两点,并与轴交于点,直线与交于点.(1)当时,求直线的方程;(2)当点异于两点时,证明:为定值.11.(2022·全国·高三专题练习)已知、分别是椭圆的右顶点和上顶点,、在椭圆上,且,设直线、的斜率分别为、,证明:为定值.12.(2022·全国·高三专题练习)已知椭圆:()的左右焦点分别为,,分别为左右顶点,直线:与椭圆交于两点,当时,是椭圆的上顶点,且的周长为.(1)求椭圆的方程;(2)设直线交于点,证明:点在定直线上.(3)设直线的斜率分别为,证明:为定值.13.(2022·全国·高三专题练习)在平面直角坐标系中,如图,已知的左、右顶点为、,右焦点为,设过点的直线、与椭圆分别交于点、,其中,,.(1)设动点满足,求点的轨迹;(2)设,,求点的坐标;(3)设,求证:直线必过轴上的一定点(其坐标与无关).14.(2022·全国·高三专题练习)如图,椭圆:,a,b为常数),动圆,.点分别为的左,右顶点,与相交于A,B,C,D四点.(1)求直线与直线交点M的轨迹方程;(2)设动圆与相交于四点,其中,.若矩形与矩形的面积相等,证明:为定值.15.(2022·全国·高三专题练习)已知椭圆左顶点为,为原点,,是直线上的两个动点,且,直线和分别与椭圆交于,两点(1)若,求的面积的最小值;(2)若,,三点共线,求实数的值.16.(2022·全国·高三专题练习)已知椭圆:的长轴长为4,左、右顶点分别为,经过点的动直线与椭圆相交于不同的两点(不与点重合).(1)求椭圆的方程及离心率;(2)求四边形面积的最大值;(3)若直线与直线相交于点,判断点是否位于一条定直线上?若是,写出该直线的方程.(结论不要求证明)17.(2022·全国·高三专题练习)已知分别是椭圆的左、右焦点,P是椭圆C上的一点,当PF1⊥F1F2时,|PF2|=2|PF1|.(1)求椭圆C的标准方程:(2)过点Q(﹣4,0)的直线l与椭圆C交于M,N两点,点M关于x轴的对称点为点M′,证明:直线NM′过定点.18.(2022·全国·高三专题练习)已知椭圆过点,且.(Ⅰ)求椭圆C的方程:(Ⅱ)过点的直线l交椭圆C于点,直线分别交直线于点.求的值.19.(2022·全国·高三专题练习)如图,为坐标原点,椭圆()的焦距等于其长半轴长,为椭圆的上、下顶点,且(1)求椭圆的方程;(2)过点作直线交椭圆于异于的两点,直线交于点.求证:点的纵坐标为定值3.20.(2022·全国·高三专题练习)已知椭圆的长轴长为6,离心率为.(1)求椭圆C的标准方程;(2)设椭圆C的左、右焦点分别为,,左、右顶点分别为A,B,点M,N为椭圆C上位于x轴上方的两点,且,记直线AM,BN的斜率分别为,且,求直线的方程.21.(2022·全国·高三专题练习)已知:如图,椭圆,分别是其左、右焦点,是过椭圆上一点的切线,是直线上的两点(不同于点).求证:.(人射角等于反射角)22.(2022·全国·高三专题练习)生活中,椭圆有很多光学性质,如从椭圆的一个焦点出发的光线射到椭圆镜面后反射,反射光线经过另一个焦点.现椭圆C的焦点在y轴上,中心在坐标原点,从下焦点射出的光线经过椭圆镜面反射到上焦点,这束光线的总长度为4,且反射点与焦点构成的三角形面积最大值为,已知椭圆的离心率e.(1)求椭圆C的标准方程;(2)若从椭圆C中心O出发的两束光线OM、ON,分别穿过椭圆上的A、B点后射到直线上的M、N两点,若AB连线过椭圆的上焦点,试问,直线BM与直线AN能交于一定点吗?若能,求出此定点:若不能,请说明理由.23.(2022·全国·高三专题练习)欧几里得生活的时期人们就发现了椭圆有如下的光学性质:由椭圆一焦点射出的光线经椭圆内壁反射后必经过另一焦点现有一椭圆,长轴长为,从一个焦点发出的一条光线经椭圆内壁上一点反射之后恰好与轴垂直,且.(1)求椭圆的标准方程;(2)已知为该椭圆的左顶点,若斜率为且不经过点的直线与椭圆交于,两点,记直线,的斜率分别为,且满足.①证明:直线过定点;②若,求的值.24.(2022·全国·高三专题练习)历史上第一个研究圆锥曲线的是梅纳库莫斯(公元前375年-325年),大约100年后,阿波罗尼斯更详尽、系统地研究了圆锥曲线,并且他还进一步研究了这些圆锥曲线的光学性质:如图甲,从椭圆的一个焦点出发的光线或声波,经椭圆反射后,反射光线经过椭圆的另一个焦点,其中法线表示与椭圆C的切线垂直且过相应切点的直线,如图乙,椭圆C的中心在坐标原点,焦点为,由发出的光经椭圆两次反

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论