下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新思路全等三角形的经典例题判定方法条件注意⑴边边边公理(SSS)三边对应相等三边对应相等⑵边角边公理(SAS)/两边和它们的夹角对应相等(“两边夹一角”)必须是两边夹一角,不能是两边对一角⑶角边角公理(ASA)两角和它们的夹边对应相等(“两角夹一边”)不能理解为两角及任意一边…⑷角角边公理(AAS)两角和其中一角的对边对应相等例1:已知:如图,过ABC的顶点A,作AFLAB且AF=AB, AHXAC,使AH二AC,连结BH、CF,且BH与CF交于D点。求证:(1)BH=CF(2)BH±CF分析:从图中可观察分析,若证BH二CF,显然,若能证出ABH/AFC,问题就能解决。从已知看,已经知道AF=AB,AC=AH。这两个三角形已经具备两条边对应相等了。还要证明第三条边相等,显然不可能用“边边边”公理了。只能寻求两对应边的夹角了。从已知看,NBAF和NHAC都是直角。而图中的/BAC显然是公共角,根据等式性质,问题可以顺利解决。证明:(1)VAFXAB,AHXAC&/.ZBAF=ZHAC=90二.ZBAF+ZBAC=ZHAC+ZBAC即NFAC二NBAH在ABH和AFC中A5=AF(已知)<ZBAH=/必。(已证)A"=AC(已知)...ABH0AFC(边角边).*.BH=FC(全等三角形对应边相等)(2)设AC与BH交于点P在APH中,/ZHAP=90/.Z2+Z3=90(直角三角形中两个锐角互余)VZ1=Z2(全等三角形对应角相等)Z3=Z4/.Z1+Z4=Z2+Z3=90在PDC中;VZ1+Z4=90/.ZHDC=90/.BH±CF例2:已知,如上图:BD、CE是ABC的高,分别在高上取点P与Q,使BP=AC,CQ=AB。求证:AQ=AP分析:从要证的结论AQ=AP,只有在ABP和QCA中找对应原素,不难发现,已经有BP=AC、CQ=AB,也就是这两个三角形中已经有两条对应边相等。也只有找到其中夹角相等,全等就可以了,问题的关键在于如何找出N1=N2再分析已知条件,不难看出,既然BD、CE都是高,就有ZBDA=NCEA=90,这样就
可看出N1和N2都是NBAC的余角了。根据同角的余角相等这条性质得到N1=N2,这样问题就可以迎刃而解了。证明:•.•BDLAC于DCEXAB于E、二.ZBDA=ZCEA=90/.Zl+ZBAC=Z2+ZBAC=90/.Z1=Z2在ABP和PCA中=(已知)21=N2(已证)BP=AC(已知),ABP0QCA(边角边)?.AQ=AP(全等三角形对应边相等)例3:已知:如图,0A=OB、0C=0D求证:AE=BE分析:从要证明的结论AE=EB看,我们不难看出,应当在ADE和BCE中去寻找答案,而要证明ADE0BCE,比较明显的有一组对顶角相等,即NAED二NBEC,另外可以通过等式性质得到,OA-OD=OB-OC,即AD=BC,那么这两个三角的全等条件仍然差一个,从证明的结论AE二BE上分析,不可能再寻找边的对应相等了,那么只有找一组对应角是否相等就可以了,如能否证出NA=NB(或NADE二NBCE),NA二NB除了是ADE和BCE的对应角外,它们还是AOC和BOD的对应角,只要AOC^BOD,那么就可以推出ZA=ZB,这样问题便迎刃而解了,同学们自己分析一下AOC和BOD全等条件够吗证明:在AOC和BOD中04=03(已知)= 公共角)oc=00(已知)/.AOC0BOD(边角边)AZA=ZB(全等三角形的对应角相等),/OA=OB(已知)OC=OD(已知)¥.*.AD=BC(等式性质)在ADE和BCE中=已证)v/AED=ZB£C(M顶角相等)AD=(已证),ADE0BCE(角角边)?.AE=BE(全等三角形对应边相等)同学们自己动手试一试,可不可通过证明NADE二NBCE来证明ADE^BCE呢例4:已知:如图,AD〃BC,AE、BE分别平分NDAB和NCBA,DC过点E。求证:AB=ARBC分析:从要证明的结论AB=AD+BC上看,显然是两条线段的和与另外一条线段相等,可以考虑,能否在长的AB边上截一段等于AD(或BC),利用角平分线的条件证全等。
证明(一):在AB上截AF二AD,连结EF在ADE和AFE中AO=A厂(已作)<ZDAE=已知)AE=AE(公共边)二.ADE0AFEZD=ZAFE(全等三角形对应角相等)VAD#BC(已知)/.ZD+ZC=180(两直线平行,同旁内角互补)XVZD=ZAFE(已证)ZBFE=ZC(等角的补角相等)在BFE和BCE中ZBFE=NC(已证)ZFBE=NC8E(已知)BE=8月(公共边),BFE/BCE(角角边),BF=BC;.AB=AD+BC证明(二):延长AE、BC交于点F。VAE.BE分别是NDAB和NCBA的平分线。XVAD#BC/.Zl+Z2+Z3+Z4=180(两直线平等,同旁内角互补)/.Z2+Z3=90/.ZAEB=90,ZBEF^O在ABE和FBE中[/3=/4(已知)BE=6石(公共边)ZAEB=ZBEF=90。(已证)二.ABE0FBE(角边角);.AB=BFAE=EF在AED和FEC中/1="(两直线平等,内错角相等)<AE=石厂(已证)ZAED=/FXcG寸顶角相等)AED0FEC...AD=FC.•.AB=AD+BC(等量代换)
F例5:已知:如图,在四边形ABCD中,AC平分/BAD、CELAB于E,且NB+ND=180。求证:AE=AD+BE分析:从上面例题,可以看出,有时为了证明某两条线段和等于另一条线段,可以考虑“截长补短”的添加辅助线,本题是否仍可考虑这样“截长补短”的方法呢由于AC是角平分线,所以在AE上截AF二AD,连结FC,可证出ADC/AFC,问题就可以得到解决。F证明(一):在AE上截取AF二AD,连结FC。在AFC和ADC中AF=A0(已作)Nl=N2(已知)AC=AC(公共边)/.AFC0ADC(边角边)ZAFC=ZD(全等三角形对应角相等)VZB+ZD=180(已知)AZB=ZEFC(等角的补角相等)在CEB和CEF中NB=/石方。(已证)BZCEB=ZCEF=90。(已知)CE=。石(公共边)B,CEB/CEF(角角边)BE=EF,/AE=AF+EF,AE=AD+BE(等量代换)证明(二):在线段EA上截EF二BE,连结FC(如右图)。同样也可以证明,同学们自己试一试,证明过程是怎样的,看一看,当推导过程不通时,想一想,还有哪些已知条件没有充分考虑到,或是还有哪些定理,性质用的不熟,自己找一找思维障碍是什么小结:在几何证明过程中,如果现成的三角形不可以证明,则需要我们选出所需要的三角形,这就需要我们恰到好处的添加辅助线。如例:已知:ABC中,AD是BC边上的中线。求证:AD<1(ab+ac)2分析:求证AD<1(AB+AC),即可变形为2AD<AB+AC,其结构恰好为中线的2倍。小于原三角形的两边之和,如果添加辅助线,造出一个三角形,使其两边恰与AB、AC相等,而另一边正好为AD的2倍,问题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版道德与法治三年级下册《第二单元 我在这里长大》大单元 7 请到我的家乡来(计划二课时)(第二课时)(家乡的特产真不少 我的家乡人)说课稿2022课标
- 仁爱版英语八年级下册教案全集
- 新教师培训回顾
- 老年奶粉课件
- 癌症患者静脉血栓护理
- 急性喉炎的护理常规
- 《高等数学上册》课件
- 2024版钢筋混凝土排水管购销合同协议2篇
- 二零二四年度特许经营合同及特许经营费用支付借条3篇
- 我和手机做朋友课件
- 产学研合同模板
- 2024-2030年中国云安全服务行业深度调查及投资模式分析报告
- 建筑工程施工现场安全管理处罚规定
- 安徽省合肥市2024年七年级上学期期中数学试卷【附答案】
- 4.1陆地水体间的相互关系课件高中地理人教版(2019)选择性必修一
- 国开学习网《幼儿园课程与活动设计》期末大作业答案(第3套)
- DB11T 854-2023 占道作业交通安全设施设置技术要求
- 浙教版2024-2025学年七年级数学上册第四章 代数式 单元测试(附答案)
- DB11T 585-2020 组织机构、职务职称英文译写通则
- 跨境电商物流运输管理合同
- 教育心理学-形考作业1(第一至三章)-国开-参考资料
评论
0/150
提交评论