《集合的概念 》优秀课件_第1页
《集合的概念 》优秀课件_第2页
《集合的概念 》优秀课件_第3页
《集合的概念 》优秀课件_第4页
《集合的概念 》优秀课件_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章

1.1集合的概念初中知识回顾实数零有理数无理数整数正整数负无理数分数正无理数无限不循环小数有限小数或循环小数负分数负整数正分数1.实数的分类(1)规定了原点,正方向和单位长度的直线叫数轴。

(2)数轴上的点表示数,右边的点表示的数总大于左边的点表示的数。

(3)绝对值代数意义:=2.数轴与绝对值几何意义:在数轴上,一个数与原点的距离叫做该数的绝对值。问题提出

“集合”是日常生活中的一个常用词,现代汉语解释为:许多的人或物聚在一起.

在现代数学中,集合是一种简洁、高雅的数学语言,我们怎样理解数学中的“集合”?集合的概念情境导入在电影《唐伯虎点秋香》中,有下面一段场景:华太夫人带着婢女四香及丫环上山进香,江南四大才子唐伯虎、祝枝山、文征明、徐祯卿久闻秋香貌若天仙,想一睹芳容,在道旁等候,唐伯虎看过秋香后觉得很普通,文征明提议一.起喊美女,于是众人齐喊美女,结果华府的婢女四香及丫环全部转过头来,都以为叫她,也让四大才子从众丫环的美貌中发现了秋的不凡.

问题1:影片中①美女,②江南四大才子,③华府的所有丫环研究的对象能不能确定?为什么?①中对象不能确定.因为美女没有明确的划分标准.②中,唐伯虎、祝枝山、文征明、徐祯卿四人,③中,华府的每一个丫环.问题2:你能指出②、③中的确切的对象吗?知识探究(一)

考察下列问题:(1)1~20以内的所有质数;(2)绝对值小于3的整数;(3)西北中学高202204班的所有女同学;(4)平面上到定点O的距离等于定长的所有的点.

思考1:上述每个问题都由若干个对象组成,每组对象的全体分别形成一个集合,集合中的每个对象都称为元素.上述4个集合中的元素分别是什么?

思考3:组成集合的元素所属对象是否有限制?集合中的元素个数的多少是否有限制?

思考4:美国NBA火箭队的全体队员是否组成一个集合?若是,这个集合中有哪些元素?

思考5:试列举一个集合的例子,并指出集合中的元素.

思考2:一般地,怎样理解“元素”与“集合”?

把研究的对象称为元素,通常用小写拉丁字母a,b,c,…表示;把一些元素组成的总体叫做集合,简称集,通常用大写拉丁字母A,B,C,…表示.知识探究(二)

任意一组对象是否都能组成一个集合?集合中的元素有什么特征?

思考1:某单位所有的“帅哥”能否构成一个集合?由此说明什么?集合中的元素必须是确定的

思考2:在一个给定的集合中能否有相同的元素?由此说明什么?集合中的元素是不重复出现的

思考3:202204班的全体同学组成一个集合,调整座位后这个集合有没有变化?由此说明什么?集合中的元素是没有顺序的

集合中的元素有哪些特征?确定性无序性互异性思考:两个集合的元素是一样的,那么这两个集合是相等的吗?是的。只要构成两个集合的元素一样,我们就称这两个集合是相等的中国的直辖市身材较高的人著名的数学家高202204班眼睛很近视的同学判断下列例子能否构成集合√×××知识探究(三)

思考1:设集合A表示“1~20以内的所有质数”,那么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A中?

思考2:对于一个给定的集合A,那么某元素a与集合A有哪几种可能关系?

思考3:如果元素a是集合A中的元素,我们如何用数学化的语言表达?a属于集合A,记作

思考4:如果元素a不是集合A中的元素,我们如何用数学化的语言表达?a不属于集合A,记作自然数集(非负整数集):记作

N正整数集:记作或整数集:记作Z有理数集:记作Q实数集:记作R知识探究(四)所有的自然数,正整数,整数,有理数,实数都构成集合,这些集合是一些常用的数集,它们有特殊的符号表示:用符号“∈”或“

”填空:

(1)3.14_______Q(2)π_______Q(3)0_______N(4)0_______N+(5)(-0.5)0_______Z(6)2_______R练一练:∈∈∈∈思考:我们可以用自然语言描述一个集合,除此之外还可以用什么方式表示集合呢?知识探究(五)思考1:这两个集合分别有哪些元素?

考察下列集合:(1)小于5的所有自然数组成的集合;(2)方程的所有实数根组成的集合.(1)0,1,2,3,4;(2)-1,0,1思考2:由上述两组数组成的集合可分别怎样表示?(1){0,1,2,3,4};(2){-1,0,1}思考3:这种表示集合的方法叫什么名称?

列举法思考4:列举法表示集合的形式是什么?

把集合的元素一一列举出来,并用花括号“{}”括起来,即例1用列举法表示下列集合:

解:(1)设小于10的所有自然数组成的集合为A,那么

A={0,1,2,3,4,5,6,7,8,9}.(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合.(2)设方程x2=x的所有实数根组成的集合为B,那么

B={0,1}.由于元素完全相同的两个集合相等,而与列举的顺序无关,因此一个集合可以有不同的列举方法.例如,例1(1)的集合还可以写成

A={9,8,7,6,5,4,3,2,1,0}等.

考察下列集合:(1)不等式的解组成的集合;(2)绝对值小于2的实数组成的集合.思考1:这两个集合能否用列举法表示?思考2:如何用数学式子描述上述两个集合的元素特征?

(1)R,且;(2)R,且思考3:上述两个集合可分别怎样表示?

(1){R|};(2){R|}思考4:这种表示集合的方法叫什么名称?

描述法思考5:描述法表示集合的形式是什么?

{元素的一般符号及取值范围|元素所具有的性质}知识探究(六)例2用适当的方法表示下列集合:(1)绝对值小于3的所有整数组成的集合;(2)所有奇数组成的集合;(3)由数字1,2,3组成的所有三位数构成的集合.{-2,-1,0,1,2}或{123,132,213,231,312,321}.或拓展延伸思考1:与{}的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论