版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第七章随机变量的数字特征第1页,课件共84页,创作于2023年2月
3、在检查一批棉花的质量时,既需要注意纤维的平均长度,又需要注意纤维长度与平均长度的偏离程度,平均长度较大、偏离程度较小,质量就较好。从上面的例子看到,与随机变量有关的某些数值,虽然不能完整地描述随机变量,但能描述随机变量在某些方面的重要特征。随机变量的数字特征就是用数字表示随机变量的分布特点,在理论和实践上都具有重要的意义。第七章随机变量的数字特征第2页,课件共84页,创作于2023年2月第七章随机变量的数字特征
数学期望方差和标准差协方差和相关系数切比雪夫不等式及大数定理中心极限定理第3页,课件共84页,创作于2023年2月7.1随机变量的数学期望一、离散型随机变量的数学期望从平均数说起,设以数据集
{2,3,2,4,2,3,4,5,3,2}为总体,求其平均数(设为μ)μ=(2+3+2+4+2+3+4+5+3+2)/10=(2×4+3×3+4×2+5×1)/10=2×4/10+3×3/10+4×2/10+5×1/10=3概括得:第4页,课件共84页,创作于2023年2月7.1随机变量的数学期望一、离散型随机变量的数学期望下面我们逐步分析如何由分布来求“均值”:(1)算术平均:如果有n个数x1,x2,…,xn,那么求这n个数的算术平均,只需将此n个数相加后除以n,即
(2)加权平均:如果这n个数中有相同的,不妨设其中有ni个取值为xi(i=1,2,…,k),列表为
频率频数取值第5页,课件共84页,创作于2023年2月7.1随机变量的数学期望一、离散型随机变量的数学期望其实,这个“加权”平均的权数ni/n就是出现数值xi的频率,而频率在n很大时,就稳定在其概率附近。(3)对于一个离散随机变量X,如果其可能取值为x1,x2,…,xn,若将这n个数相加后除以n作为“均值”,则肯定是不妥的,原因在于X取各个值的概率是不同的,概率大的出现的机会就大,在计算中其权数就应该大。用取值的概率作为一种“权数”作加权平均是十分合理的。第6页,课件共84页,创作于2023年2月7.1随机变量的数学期望1.定义
设离散随机变量X的分布律为
一、离散型随机变量的数学期望为随机变量X的数学期望,或称为该分布的数学期望,简称期望或均值。
若级数不收敛,则称X的期望不存在。如果则称XPx1x2…xn…p1p2…pn…第7页,课件共84页,创作于2023年2月7.1随机变量的数学期望一、离散型随机变量的数学期望(1)X的期望E(X)是一个数,它形式上是X的可能值的加权平均,其权重是其相应的概率,实质上它体现了X取值的真正平均,为此我们又称它为X的均值。因为它完全由X的分布所决定,所以又称为分布的平均值。(2)E(X)作为刻划X的某种特性的数值,不应与各项的排列次序有关。所以,定义中要求级数绝对收敛。注释第8页,课件共84页,创作于2023年2月所以A的射击技术较B的好.0.30.50.20.60.10.3概率10981098击中环数BA射手名称例:有A,B两射手,他们的射击技术如表所示,试问哪一个射手本领较好?解A射击平均击中环数为B射击平均击中环数为第9页,课件共84页,创作于2023年2月例:设有某种产品投放市场,每件产品投放可能发生三种情况:按定价销售出去,打折销售出去,销售不出去而回收。根据市场分析,这三种情况发生的概率分别为0.6,0.3,0.1。在这三种情况下每件产品的利润分别为10元,0元,-15元(即亏损15元)。问厂家对每件产品可期望获利多少?解:设X表示一件产品的利润(单位元),X是随机变量,且X的分布律为X100-15P0.60.30.1
依题意,所要求的是X的数学期望
E(X)=10×0.6+0×0.3+(-15)×0.1=4.5(元)第10页,课件共84页,创作于2023年2月7.1随机变量的数学期望2.几种典型的离散型随机变量的数学期望一、离散型随机变量的数学期望i.X服从参数为p的(0,1)分布:
ii.若X
b(n,p),则E(X)=np;证明:X的分布律为E(X)=0×(1-p)+1×p=p;X
0
1
P
q
p
第11页,课件共84页,创作于2023年2月7.1随机变量的数学期望2.几种典型的离散型随机变量的数学期望一、离散型随机变量的数学期望iii.若X
P(λ),则E(X)=λ。
证明:X的分布律为第12页,课件共84页,创作于2023年2月7.1随机变量的数学期望二、连续型随机变量的数学期望1.定义
设连续型随机变量X的概率密度为f(x),
如果则称
为随机变量X的数学期望,记为E(X).第13页,课件共84页,创作于2023年2月例:设随机变量X的概率密度函数为试求X的数学期望解第14页,课件共84页,创作于2023年2月7.1随机变量的数学期望二、连续型随机变量的数学期望2.几种典型的连续型随机变量的数学期望
i.若X
U(a,b),则E(X)=(a+b)/2.证:X的概率密度为第15页,课件共84页,创作于2023年2月7.1随机变量的数学期望二、连续型随机变量的数学期望2.几种典型的连续型随机变量的数学期望证:X的概率密度为ii.若X
N(µ,σ2),则E(X)=μ.特别地,若X
N(0,1),则E(X)=0.第16页,课件共84页,创作于2023年2月7.1随机变量的数学期望2.几种典型的连续型随机变量的数学期望二、连续型随机变量的数学期望证:X的概率密度为iii.若X服从参数为λ的指数分布,则E(X)=1/λ
.第17页,课件共84页,创作于2023年2月7.1随机变量的数学期望三、随机变量的函数的数学期望定理设Y是随机变量X的函数:Y=g(X)(g是连续函数),(1)X是离散型随机变量,它的分布律为P{X=xk}=pk,k=1,2,…,若绝对收敛,则有(2)
X是连续型随机变量,它的概率密度为f(x),若绝对收敛,则有第18页,课件共84页,创作于2023年2月例已知随机变量的分布律如下求解0.20.10.10.30.3-2-1012
0.20.10.10.30.30.10.40.5014对相同的值合并,并把对应的概率相加,可得所以或的数学期望。的分布律为第19页,课件共84页,创作于2023年2月例:某公司生产的机器其无故障工作时间X有密度函数公司每出售一台机器可获利1600元,若机器售出后使用1.2万小时之内出故障,则应予以更换,这时每台亏损1200元;若在1.2到2万小时之间出故障,则予以维修,由公司负担维修费400元;在使用2万小时以后出故障,则用户自己负责.求该公司售出每台机器的平均获利.解:设Y表示售出一台机器的获利.则第20页,课件共84页,创作于2023年2月7.1随机变量的数学期望三、随机变量的函数的数学期望
定理:设Z是随机变量X,Y的函数Z=g(X,Y)(g是连续函数).(1)设二维随机向量(X,Y)的分布律为(2)设二维随机向量(X,Y)的分布密度为f(x,y),若若则则第21页,课件共84页,创作于2023年2月例:设(X,Y)的联合分布律如下,Z=XY,求E(Z).解
XY
123
010.10.150.25
0.250.150.1
第22页,课件共84页,创作于2023年2月例:设(X,Y)服从A上的均匀分布,其中A为由x轴,y轴及直线x+y/2=1围成的平面三角形区域,求E(XY)x+y/2=1201xy解:第23页,课件共84页,创作于2023年2月7.1随机变量的数学期望四、数学期望的性质1.若C是常数,则E(C)=C.2.设X,Y是两个随机变量,若E(X),E(Y)存在,则对任意的实数a、b,E(aX+bY)存在,且有
E(aX+bY)=aE(X)+bE(Y)3.设X,Y是互相独立的随机变量,则有
E(XY)=E(X)E(Y)性质2、3都可推广到有限个互相独立的随机变量之积的情况.第24页,课件共84页,创作于2023年2月7.1随机变量的数学期望四、数学期望的性质性质2E(aX+bY)=aE(X)+bE(Y)证明(1)设离散型随机向量(X,Y)的联合分布列和边缘分布列分别为P{X=xi,Y=yj}=pij,i,j=1,2,…P{X=xi}=pi.,i=1,2,…P{Y=yj}=p.j,j=1,2,…则第25页,课件共84页,创作于2023年2月7.1随机变量的数学期望四、数学期望的性质性质2E(aX+bY)=aE(X)+bE(Y)(2)设连续型随机向量(X,Y)的联合概率密度和边际概率密度分别为f(x,y)和fX(x),fY(y)则第26页,课件共84页,创作于2023年2月7.1随机变量的数学期望四、数学期望的性质性质3如X,Y是互相独立,则E(XY)=E(X)E(Y)证明(1)设离散型随机向量(X,Y)的联合分布律和边缘分布律分别为P{X=xi,Y=yj}=pij,i,j=1,2,…P{X=xi}=pi.,i=1,2,…P{Y=yj}=p.j,j=1,2,…则第27页,课件共84页,创作于2023年2月7.1随机变量的数学期望四、数学期望的性质性质3如X,Y是互相独立,则E(XY)=E(X)E(Y)(2)设连续型随机向量(X,Y)的联合概率密度和边际概率密度分别为f(x,y)和fX(x),fY(y)则第28页,课件共84页,创作于2023年2月例:将n个球随机地放入M个盒子中去,设每个球放入各个盒子是等可能的,求有球盒子数X的期望解:记i=1,2,…,M,则P(第i个盒无球)因而第29页,课件共84页,创作于2023年2月例:抛掷6颗骰子,X表示出现的点数之和,求E(X).从而由期望的性质可得
练习第30页,课件共84页,创作于2023年2月7.2方差和标准差引例有两批钢筋(每批10根)它们的抗拉强度为:第一批110,120,120,125,125,125,130,130,135,140第二批90,100,120,125,125,130,135,145,145,145可以计算出两批数据的平均数都是126,但直观上第二批数据与平均数126有较大的偏离因此,欲描述一组数据的分布,单单有中心位置的指标是不够的,尚需有一个描述相对于中心位置的偏离程度的指标.通常可用E[X-E(X)]2描述相对于期望的偏离第31页,课件共84页,创作于2023年2月7.2方差和标准差一、方差的定义
定义设X是一个随机变量,若E[X-E(X)]2存在,则称E[X-E(X)]2为X的方差,记为D(X),即:D(X)=E[X-E(X)]2注释:(1)方差是随机变量X与其“中心”E(X)的偏差平方的平均。它表达了X的取值与其期望值E(X)的偏离程度。若X取值较集中,则D(X)较小,反之,若取值较分散,则D(X)较大。(2)应用上,常用量,称为标准差或均方差,记为
(X)=。第32页,课件共84页,创作于2023年2月7.2方差和标准差二、方差的计算公式
方差实际上是随机变量X的函数g(X)=[X-E(X)]2的数学期望.于是(1)对于离散型随机变量X,若P{X=xk}=pk,k=1,2,…则(2)对于连续型随机变量X,若其概率密度为f(x),则第33页,课件共84页,创作于2023年2月7.2方差和标准差二、方差的计算公式(3)D(X)=E(X2)-[E(X)]2
证明:D(X)=E[X-E(X)]2=E(X2-2X·E(X)+[E(X)]2)=E(X2)-2E(X)·E(X)+[E(X)]2=E(X2)-[E(X)]2第34页,课件共84页,创作于2023年2月7.2方差和标准差三、常见分布的方差1.(0-1)分布的方差定理:若P{X=0}=q,P{X=1}=p,则D(X)=pq.证明X
0
1
P
q
p
第35页,课件共84页,创作于2023年2月7.2方差和标准差三、常见分布的方差2.二项分布的方差定理:若随机变量X服从二项分布X~B(n,p),则
D(X)=npq.证明第36页,课件共84页,创作于2023年2月7.2方差和标准差三、常见分布的方差3.泊松分布的方差定理:设随机变量X服从泊松分布X~P(λ),则D(X)=λ.证明第37页,课件共84页,创作于2023年2月7.2方差和标准差三、常见分布的方差4.均匀分布的方差定理:设随机变量X服从均匀分布X~U(a,b),则
D(X)=(b-a)2/12.证明第38页,课件共84页,创作于2023年2月7.2方差和标准差三、常见分布的方差5.指数分布的方差定理:设随机变量X服从参数为λ的指数分布,则证明第39页,课件共84页,创作于2023年2月7.2方差和标准差三、常见分布的方差6.正态分布的方差定理:设随机变量X服从正态分布X~N(μ,σ2),则D(X)=σ2证明第40页,课件共84页,创作于2023年2月7.2方差和标准差常见分布的期望和方差表第41页,课件共84页,创作于2023年2月7.2方差和标准差四、方差的性质假定以下所遇到的随机变量的方差存在:(1)设C是常数,则D(C)=0;(2)设X是随机变量,a是常数,则D(aX)=a2D(X),从而
D(aX+b)=a2D(X);(3)设X,Y是两个相互独立的随机变量,则有
D(X
Y)=D(X)+D(Y);(2)证:D(aX+b)=E{[(aX+b)-E(aX+b)]2}=E{[(aX+b)-E(aX)-b]2}=E{[aX-E(aX)]2}=E{[a(X-E(X))]2}=a2E{[X-E(X)]2}=a2D(X)第42页,课件共84页,创作于2023年2月7.2方差和标准差由于X,Y相互独立,X-E(X)与Y-E(Y)也相互独立,由数学期望的性质,
2E{[X-E(X)][Y-E(Y)]}=2E[X-E(X)]
E[Y-E(Y)]=0于是得D(X+Y)=D(X)+D(Y).四、方差的性质(3)证:D(X+Y)=E{[(X+Y)-E(X+Y)]2}=E{[(X-E(X))+(Y-E(Y))]2}=E{[X-E(X)]2}+E{[Y-E(Y)]2}
+2E{[X-E(X)][Y-E(Y)]}这一性质可以推广到任意有限多个相互独立的随机变量之和的情况。
第43页,课件共84页,创作于2023年2月7.2方差和标准差四、方差的性质若相互独立,为常数则若X,Y相互独立第44页,课件共84页,创作于2023年2月例设X1,X2,…,Xn独立同分布,E(X)=μ,D(X1)=σ2.记若用X1,X2,…,Xn表示对某物件重量的n次重复测量的误差,而σ2为测量误差大小的度量,公式表明n次重复测量的平均误差是单次测量误差的1/n,换言之,重复测量的平均精度比单次测量的精度高.证明:证注第45页,课件共84页,创作于2023年2月已知X的概率密度函数为其中A,B是常数,且E(X)=0.5.求A,B.设Y=X2,求E(Y),D(Y)练习第46页,课件共84页,创作于2023年2月解(1)第47页,课件共84页,创作于2023年2月(2)第48页,课件共84页,创作于2023年2月7.3协方差与相关系数引言对于二维随机向量(X,Y)来说,数学期望E(X)、E(Y)只反映了X与Y各自的平均值,方差只反映了X与Y各自离开均值的偏离程度,它们对X与Y之间相互关系不提供任何信息.但二维随机向量(X,Y)的概率密度p(x,y)或分布律pij全面地描述了(X,Y)的统计规律,也包含有X与Y之间关系的信息.我们希望有一个数字特征能够在一定程度上反映这种联系.第49页,课件共84页,创作于2023年2月7.3协方差与相关系数一、协方差定义:设二随机向量(X,Y)的数学期望(E(X),E(Y))存在,若E[(X-E(X))(Y-E(Y))]存在,则称它为随机变量X与Y的协方差,记为cov(X,Y),即cov(X,Y)=E[(X-E(X))(Y-E(Y))]若X,Y为连续型随机变量(1)用定义求:若X,Y为离散型随机变量
计算
第50页,课件共84页,创作于2023年2月7.3协方差与相关系数一、协方差①协方差有计算公式Cov(X,Y)=E(XY)-E(X)E(Y)(2)用公式求证由协方差的定义及数学期望的性质,得第51页,课件共84页,创作于2023年2月7.3协方差与相关系数一、协方差②任意两个随机变量X与Y的和的方差
D(X±Y)=D(X)+D(Y)±2Cov(X,Y)(2)用公式求证由方差公式及协方差的定义,得第52页,课件共84页,创作于2023年2月例设(X,Y)有联合分布律YX01∑∑011/41/41/31/67/125/121/21/21求cov(X,Y).解E(X)=0×1/2+1×1/2=1/2E(Y)=0×7/12+1×5/12=5/12E(XY)=1×1/6=1/6cov(X,Y)=E(XY)-E(X)E(Y)=1/6-5/24=1/24第53页,课件共84页,创作于2023年2月例:设(X,Y)~N(μ1,μ2,σ12,σ22,ρ),求cov(X,Y)
Y~N(μ2,σ22),解:X~N(μ1,σ12),E(X)=μ1,D(X)=σ12;E(Y)=μ2,D(X)=σ22;令第54页,课件共84页,创作于2023年2月7.3协方差与相关系数一、协方差(1)Cov(X,Y)=Cov(Y,X);(3)Cov(aX+b,cY+d)=acCov(X,Y),a,b,c,d为常数;(2)Cov(X,X)=D(X);性质
证Cov(X,Y)=E[(X-E(X))(Y-E(Y))]=E[(Y-E(Y))(X-E(X))]=Cov(Y,X)证Cov(aX+b,cY+d)=E[(aX+b-E(aX+b))(cY+d-E(cY+d))]=E{[a(X-E(X))][c(Y-E(Y))]}=acE{[X-E(X)][Y-E(Y)]}=acCov(X,Y)第55页,课件共84页,创作于2023年2月7.3协方差与相关系数二、相关系数定义:设二维随机变量(X,Y)的方差D(X)>0,D(Y)>0,协方差Cov(X,Y)均存在,则称为随机变量X与Y的相关系数或标准协方差.一般地,数学期望为0,方差为1的随机变量的分布称为标准分布,故ρXY又称为标准协方差。第56页,课件共84页,创作于2023年2月7.3协方差与相关系数二、相关系数性质1.|ρXY|≤1;3.|ρXY|=1,称之为X与Y完全相关,其充要条件为,存在常数a,b使得P{Y=aX+b}=1.2.ρXY=0,称之为X与Y不相关;意义:|ρXY|=1当且仅当Y跟X几乎有线性关系。这在一定程度上说明了相关系数的概率意义。ρXY并不是刻画X,Y之间的“一般”关系,而只是刻画X,Y之间线性相关的程度。说明:假设随机变量X,Y的相关系数ρXY存在,当X与Y相互独时,ρXY=0,即X与Y不相关,反之若X与Y不相关,X与Y却不一定相互独立。第57页,课件共84页,创作于2023年2月7.3协方差与相关系数二、相关系数oXYoooXXXYYY0<ρ<1-1<ρ<0ρ=1ρ=-1相关情况示意图第58页,课件共84页,创作于2023年2月XY-10100.070.180.1510.080.320.20解X与Y的分布律分别为X-101P0.150.50.35Y01P0.40.6例:二维随机变量(X,Y)的联合分布律如下表,求,第59页,课件共84页,创作于2023年2月解
第60页,课件共84页,创作于2023年2月第61页,课件共84页,创作于2023年2月例设(X,Y)服从二元正态分布N(μ1,μ2,σ12,σ22,ρ),则因为(X,Y)~N(μ1,μ2,σ12,σ22,ρ)且,所以证(1)必要性X~N(μ1,σ12)Y~N(μ2,σ22)所以故X与Y相互独立第62页,课件共84页,创作于2023年2月证(2)充分性因为X,Y相互独立所以,f(x,y)=f(x)f(y)所以ρ=0第63页,课件共84页,创作于2023年2月小结:结论1:X与Y相互独立
ρXY=0
X与Y不相关;
反之,ρXY=0不能推出X与Y相互独立。结论2:对任意X与Y,以下结论等价
ρXY=0
Cov(X,Y)=0
E(XY)=E(X)E(Y)
D(X+Y)=D(X)+D(Y)。结论3:若(X,Y)~N(μ1,μ2,σ12,σ22,ρ),则X与Y相互独立
ρXY=0
X与Y不相关。7.3协方差与相关系数第64页,课件共84页,创作于2023年2月7.3协方差与相关系数三、随机变量的矩
定义:设X和Y是随机变量,(1)若E(Xk)(k=1,2,…)存在,则称它为X的k阶原点矩,简称k阶矩.(2)若E{[X-E(X)]k}(k=1,2,…)存在,则称它为X的k阶中心矩.例如:期望是一阶原点矩,方差D(X)是二阶中心矩(3)对正整数k与l,称E(XkYl)为X和Y的k+l阶混合矩;(4)若E{[X-E(X)]k[Y-E(Y)]l}存在,称它为X和Y的k+l阶混合中心矩。第65页,课件共84页,创作于2023年2月7.3协方差与相关系数三、随机变量的矩
推广对于n维随机向量(X1,X2,…,Xn),把向量(X1,X2,…,Xn)用列向量形式表示并记为X,即X=(X1,X2,…,Xn)
。定义设X=(X1,X2,…,Xn)
为n维随机向量,并记μi=E(Xi),则称μ=(μ1,μ2,…,μn)
为向量X的数字期望或均值,称矩阵为向量X的协方差矩阵。第66页,课件共84页,创作于2023年2月7.3协方差与相关系数cij=Cov(Xi,Xj)=E{[Xi-E(Xi)][Xj-E(Xj)]},第67页,课件共84页,创作于2023年2月例:设(X,Y)~N(μ1,μ2,σ12,σ22,ρ),求X和Y的协方差矩阵.解第68页,课件共84页,创作于2023年2月7.4切比雪夫不等式及大数律(1)事件发生的频率具有稳定性,即随着试验次数的增加,事件发生的频率逐渐稳定于某个常数.(2)在实践中人们还认识到大量测量值的算术平均值也具有稳定性.现象:第69页,课件共84页,创作于2023年2月7.4切比雪夫不等式及大数律一、伯努利大数律设X1,X2,…是相互独立的随机变量序列,具有相同的数学期望E(Xk)=μ和方差D(Xk)=σ2(k=1,2,…),则对于任意给定的ε>0,恒有其中若上式对任何ε>0成立,则称依概率收敛于μ,且可表示为第70页,课件共84页,创作于2023年2月7.4切比雪夫不等式及大数律一、伯努利大数律例如:意思是:当a而意思是:时,Xn落在内的概率越来越大.,当第71页,课件共84页,创作于2023年2月7.4切比雪夫不等式及大数律切比雪夫(Chebyshev)不等式:设随机变量X具有数学期望E(X)=μ,方差D(X)=σ2,则对于任意正数ε,有二、切比雪夫(Chebyshev)不等式第72页,课件共84页,创作于2023年2月7.4切比雪夫不等式及大数律证明(1)设X的概率密度为p(x),则有(2)设离散型随机变量X的分布律为P{X=xk}=pk,则有二、切比雪夫(Chebyshev)不等式第73页,课件共84页,创作于2023年2月例:在供暖的季节,住房的平均温度为20度,标准差为2度,试估计住房温度与平均温度的偏差的绝对值小于4度的概率的下界.解第74页,课件共84页,创作于2023年2月7.4切比雪夫不等式及大数律三、切比雪夫(Chebyshev)大数定律设X1,X2,…是相互独立的随机变量序列,具有数学期望E(Xi)和方差D(Xi)[i=1,2,...].若存在常数C,使得D(Xi)≤C(i=1,2,…),则对于任意给定的ε>0,恒有证明第75页,课件共84页,创作于2023年2月7.5中心极限定理在一定条件下,许多随机变量的极限分布是正态分布:“若一个随机变量X可以看着许多微小而独立的随机因素作用的总后果,每一种因素的影响都很小,都有不起压倒一切的主导作用,则X一般都可以认为近似地服从正态分布.”例如对某物的长度进行测量,在测量时有许多随机因素影响测量的结果.如温度和湿度等因素对测量仪器的影响,使测量产生误差X1;测量者观察时视线所产生的误差X2;测量者心理和生理上的变化产生的测量误差X3;…显然这些误差是微小的、随机的,而且相互没有影响.测量的总误差是上述各个因素产生的误差之和,即∑Xi.第76页,课件共84页,创作于2023年2月7.5中心极限定理一般地,在研究许多随机因素产生的总影响时,很多可以归结为研究相互独立的随机变量之和的分布问题,而通常这种和的项数都很大.因此,需要构造一个项数越来越多的随机变量和的序列:我们关心的是当n→∞时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑涂料工程皮卡租赁合同
- 药物研发学徒技能提升计划
- 贸易余款偿还协议
- 2022年大学能源动力专业大学物理下册月考试卷A卷-附解析
- 结直肠狭窄内镜治疗
- 垃圾问题与学校教育的整合与创新
- 2022年大学电子信息科学专业大学物理二期中考试试卷-含答案
- 2022年大学环境生态专业大学物理二期末考试试卷D卷-含答案
- 消化道疾病的护理常规
- 智能餐厅解决方案
- 2020医用氧药典标准
- 七年级生物作业设计
- 2023年考研英语二真题(含答案及解析)【可编辑】
- 人教版九年级化学第一至四单元测试卷及答案
- 食堂员工规章制度
- 英文介绍中国饺子-PPT
- 软件工程(嵌入式培养)专业职业生涯规划书
- 精力管理-课件
- 提高工作效率有技巧(一)课件
- 1+X证书无人机练习题库含答案
- 违法发放贷款罪
评论
0/150
提交评论