版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1.【2017课标1,理】如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A. B.C. D.【答案】B2.【2017浙江,8】已知随机变量满足P(=1)=pi,P(=0)=1—pi,i=1,2.若0<p1<p2<,则A.<,< B.<,>C.>,< D.>,>【答案】A【解析】,选A.3.【2017山东,理5】为了研究某班学生的脚长(单位:厘米)和身高(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出与之间有线性相关关系,设其回归直线方程为.已知,,.该班某学生的脚长为24,据此估计其身高为(A)(B)(C)(D)【答案】C【解析】由已知,选C.4.【2017山东,理8】从分别标有,,,的张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是(A)(B)(C)(D)【答案】C【解析】标有,,,的张卡片中,标奇数的有张,标偶数的有张,所以抽到的2张卡片上的数奇偶性不同的概率是,选C.5.【2017课标II,理13】一批产品的二等品率为,从这批产品中每次随机取一件,有放回地抽取次,表示抽到的二等品件数,则。【答案】1.96【解析】由题意可得,抽到二等品的件数符合二项分布,即,由二项分布的期望公式可得.6.【2017山东,理18】(本小题满分12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(I)求接受甲种心理暗示的志愿者中包含A1但不包含的频率。(II)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.【答案】(I)(II)X的分布列为X01234根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)附: 【答案】(1);(2)见解析;(3).【解析】(1)记B表示事件“旧养殖法的箱产量低于”,表示事件“新养殖法的箱产量不低于”由题意知旧养殖法的箱产量低于的频率为故的估计值为0.62新养殖法的箱产量不低于的频率为故的估计值为0.66因此,事件A的概率估计值为(2)根据箱产量的频率分布直方图得列联表箱产量箱产量旧养殖法6238新养殖法3466由于故有的把握认为箱产量与养殖方法有关.(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于的直方图面积为,箱产量低于的直方图面积为故新养殖法箱产量的中位数的估计值为.9.【2017北京,理17】为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.(Ⅰ)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;(Ⅱ)从图中A,B,C,D四人中随机.选出两人,记为选出的两人中指标x的值大于1.7的人数,求的分布列和数学期望E();(Ⅲ)【答案】(1)0.3(2)见解析(3)在这100名患者中,服药者指标数据的方差大于未服药者指标数据的方差.所以的分布列为012故的期望.(Ⅲ)在这100名患者中,服药者指标数据的方差大于未服药者指标数据的方差.10.【2017天津,理16】从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为.(Ⅰ)设表示一辆车从甲地到乙地遇到红灯的个数,求随机变量的分布列和数学期望;(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.【答案】(Ⅰ)见解析;(Ⅱ).【解析】(Ⅰ)解:随机变量的所有可能取值为0,1,2,3.,,,.所以,随机变量的分布列为0123随机变量的数学期望.(Ⅱ)解:设表示第一辆车遇到红灯的个数,表示第二辆车遇到红灯的个数,则所求事件的概率为.所以,这2辆车共遇到1个红灯的概率为.易错起源1、古典概型和几何概型例1、(1)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()A.eq\f(3,10)B.eq\f(1,5)C.eq\f(1,10)D.eq\f(1,20)(2)在[-1,1]上随机地取一个数k,则事件“直线y=kx与圆(x-5)2+y2=9相交”发生的概率为________.答案(1)C(2)eq\f(3,4)【变式探究】(1)已知函数f(x)=eq\f(1,3)ax3-eq\f(1,2)bx2+x,连续抛掷两颗骰子得到点数分别是a,b,则函数f′(x)在x=1处取得最值的概率是()A.eq\f(1,36) B.eq\f(1,18)C.eq\f(1,12) D.eq\f(1,6)(2)如图,大正方形的面积是34,四个全等直角三角形围成一个小正方形,直角三角形的较短边长为3,向大正方形内抛一枚幸运小花朵,则小花朵落在小正方形内的概率为()A.eq\f(1,17) B.eq\f(2,17)C.eq\f(3,17) D.eq\f(4,17)答案(1)C(2)B解析(1)f′(x)=ax2-bx+1(a,b∈N*,且1≤a≤6,1≤b≤6),其对称轴方程为x=eq\f(b,2a)=1,即b=2a,抛掷两颗骰子得到的点数一共有{(a,b)|a,b∈N*,1≤a≤6,1≤b≤6}共36种等可能出现的情况,其中满足b=2a的有(1,2),(2,4),(3,6)共3种情况,所以其概率为P=eq\f(3,36)=eq\f(1,12),故选C.(2)直角三角形的较短边长为3,则较长边长为5,所以小正方形边长为2,面积为4,所以向大正方形内抛一枚幸运小花朵时,小花朵落在小正方形内的概率为eq\f(4,34)=eq\f(2,17),故选B.【名师点睛】(1)解答有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数,这常用到计数原理与排列、组合的相关知识.(2)在求基本事件的个数时,要准确理解基本事件的构成,这样才能保证所求事件所包含的基本事件个数的求法与基本事件总数的求法的一致性.(3)当构成试验的结果的区域为长度、面积、体积、弧长、夹角等时,应考虑使用几何概型求解.【锦囊妙计,战胜自我】1.古典概型的概率P(A)=eq\f(m,n)=eq\f(A中所含的基本事件数,基本事件总数).2.几何概型的概率P(A)=eq\f(构成事件A的区域长度面积或体积,试验的全部结果所构成的区域长度面积或体积).易错起源2、相互独立事件和独立重复试验例2、某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和系统B在任意时刻发生故障的概率分别为eq\f(1,10)和p.(1)若在任意时刻至少有一个系统不发生故障的概率为eq\f(49,50),求p的值;(2)求系统A在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率.解(1)设“至少有一个系统不发生故障”为事件C,那么1-P(eq\x\to(C))=1-eq\f(1,10)·p=eq\f(49,50),解得p=eq\f(1,5).(2)设“系统A在3次相互独立的检测中不发生故障的次数大于发生故障的次数”为事件D.“系统A在3次相互独立的检测中发生k次故障”为事件Dk.则D=D0+D1,且D0、D1互斥.依题意,得P(D0)=Ceq\o\al(0,3)(1-eq\f(1,10))3,P(D1)=Ceq\o\al(1,3)eq\f(1,10)(1-eq\f(1,10))2,所以P(D)=P(D0)+P(D1)=eq\f(729,1000)+eq\f(243,1000)=eq\f(243,250).所以系统A在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率为eq\f(243,250).【变式探究】(1)把一枚骰子连续抛掷两次,记“第一次抛出的是素数点”为事件A,“第二次抛出的是合数点”为事件B,则P(B|A)等于()A.eq\f(1,2)B.eq\f(1,4)C.eq\f(1,6)D.eq\f(1,3)(2)如图所示,某快递公司送货员从公司A处准备开车送货到某单位B处,有A→C→D→B,A→E→F→B两条路线.若该地各路段发生堵车与否是相互独立的,且各路段发生堵车事件的概率如图所示(例如A→C→D算作两个路段,路段AC发生堵车事件的概率为eq\f(1,6),路段CD发生堵车的概率为eq\f(1,10)).若使途中发生堵车事件的概率较小,则由A到B应选择的路线是______________.答案(1)D(2)A→E→F→B(2)路线A→C→D→B途中发生堵车事件的概率P1=1-(1-eq\f(1,6))×(1-eq\f(1,10))×(1-eq\f(2,5))=eq\f(11,20),路线A→E→F→B途中发生堵车事件的概率P2=1-(1-eq\f(1,5))×(1-eq\f(1,8))×(1-eq\f(1,5))=eq\f(11,25).因为eq\f(11,25)<eq\f(11,20),所以应选择路线A→E→F→B.【名师点睛】求相互独立事件和独立重复试验的概率的注意点:(1)求复杂事件的概率,要正确分析复杂事件的构成,分析复杂事件能转化为几个彼此互斥事件的和事件还是能转化为几个相互独立事件同时发生的积事件,然后用概率公式求解.(2)注意辨别独立重复试验的基本特征:①在每次试验中,试验结果只有发生与不发生两种情况;②在每次试验中,事件发生的概率相同.【锦囊妙计,战胜自我】1.条件概率在A发生的条件下B发生的概率:P(B|A)=eq\f(PAB,PA).2.相互独立事件同时发生的概率P(AB)=P(A)P(B).3.独立重复试验、二项分布如果事件A在一次试验中发生的概率是p,那么它在n次独立重复试验中恰好发生k次的概率为Pn(k)=Ceq\o\al(k,n)pk(1-p)n-k,k=0,1,2,…,n.一般地,在n次独立重复试验中,用X表示事件A发生的次数,设每次试验中事件A发生的概率为p,则P(X=k)=Ceq\o\al(k,n)pkqn-k,其中0<p<1,p+q=1,k=0,1,2,…,n,称X服从参数为n,p的二项分布,记作X~B(n,p),且E(X)=np,D(X)=np(1-p).易错起源3、离散型随机变量的分布列例3、甲、乙、丙三人独立地对某一技术难题进行攻关.甲能攻克的概率为eq\f(2,3),乙能攻克的概率为eq\f(3,4),丙能攻克的概率为eq\f(4,5).(1)求这一技术难题被攻克的概率;(2)现假定这一技术难题已被攻克,上级决定奖励a万元.奖励规则如下:若只有一人攻克,则此人获得全部奖金a万元;若只有两人攻克,则奖金奖给此二人,每人各得eq\f(a,2)万元;若三人均攻克,则奖金奖给此三人,每人各得eq\f(a,3)万元.设乙、丙两人得到的奖金数的和为X,求X的分布列和均值.解(1)记“这一技术难题被攻克”为事件A,则其对立事件eq\x\to(A)为“这一技术难题三人都没有攻克”.故所求概率P(A)=1-(1-eq\f(2,3))×(1-eq\f(3,4))×(1-eq\f(4,5))=1-eq\f(1,3)×eq\f(1,4)×eq\f(1,5)=eq\f(59,60).(2)设甲得到的奖金为ξ万元,由题意可知攻克难题的奖金是a万元,所以乙、丙两人得到的奖金之和为X=a-ξ(万元).由题意可知,ξ的所有可能取值为0,eq\f(a,3),eq\f(a,2),a.其与X的取值关系如下表:ξ0eq\f(a,3)eq\f(a,2)aX=a-ξaeq\f(2a,3)eq\f(a,2)0故P(X=a)=P(ξ=0)=eq\f(\f(1,3)1-\f(1,4)×\f(1,5),\f(59,60))=eq\f(19,59);P(X=eq\f(2a,3))=P(ξ=eq\f(a,3))=eq\f(\f(2,3)×\f(3,4)×\f(4,5),\f(59,60))=eq\f(24,59);P(X=eq\f(a,2))=P(ξ=eq\f(a,2))=eq\f(\f(2,3)\f(3,4)×\f(1,5)+\f(1,4)×\f(4,5),\f(59,60))=eq\f(14,59);P(X=0)=P(ξ=a)=eq\f(\f(2,3)×\f(1,4)×\f(1,5),\f(59,60))=eq\f(2,59).故X的分布列为Xaeq\f(2a,3)eq\f(a,2)0Peq\f(19,59)eq\f(24,59)eq\f(14,59)eq\f(2,59)所以E(X)=a×eq\f(19,59)+eq\f(2a,3)×eq\f(24,59)+eq\f(a,2)×eq\f(14,59)+0×eq\f(2,59)=eq\f(42a,59).【变式探究】某中学根据2002~2015年期间学生的兴趣爱好,分别创建了“摄影”、“棋类”、“国学”三个社团,据资料统计新生通过考核选拔进入这三个社团成功与否相互独立.2016年某新生入学,假设他通过考核选拔进入该校的“摄影”、“棋类”、“国学”三个社团的概率依次为m、eq\f(1,3)、n,已知三个社团他都能进入的概率为eq\f(1,24),至少进入一个社团的概率为eq\f(3,4),且m>n.(1)求m与n的值;(2)该校根据三个社团活动安排情况,对进入“摄影”社的同学增加校本选修学分1分,对进入“棋类”社的同学增加校本选修学分2分,对进入“国学”社的同学增加校本选修学分3分.求该新同学在社团方面获得校本选修课学分分数的分布列及均值.解(1)依题意,eq\b\lc\{\rc\(\a\vs4\al\co1(\f(1,3)mn=\f(1,24),,1-1-m1-\f(1,3)1-n=\f(3,4),))解得eq\b\lc\{\rc\(\a\vs4\al\co1(m=\f(1,2),,n=\f(1,4).))P(X=5)=eq\f(1,2)×eq\f(1,3)×eq\f(1,4)=eq\f(1,24);P(X=6)=eq\f(1,2)×eq\f(1,3)×eq\f(1,4)=eq\f(1,24).故X的分布列为X0123456Peq\f(1,4)eq\f(1,4)eq\f(1,8)eq\f(5,24)eq\f(1,12)eq\f(1,24)eq\f(1,24)所以E(X)=0×eq\f(1,4)+1×eq\f(1,4)+2×eq\f(1,8)+3×eq\f(5,24)+4×eq\f(1,12)+5×eq\f(1,24)+6×eq\f(1,24)=eq\f(23,12).【名师点睛】求解随机变量分布列问题的两个关键点(1)求离散型随机变量分布列的关键是正确理解随机变量取每一个值所表示的具体事件,然后综合应用各类概率公式求概率.(2)求随机变量均值与方差的关键是正确求出随机变量的分布列.若随机变量服从二项分布,则可直接使用公式法求解.【锦囊妙计,战胜自我】1.离散型随机变量的分布列的两个性质(1)pi≥0(i=1,2,…,n);(2)p1+p2+…+pn=1.2.均值公式E(X)=x1p1+x2p2+…+xnpn.3.均值的性质(1)E(aX+b)=aE(X)+b;(2)若X~B(n,p),则E(X)=np.4.方差公式D(X)=[x1-E(X)]2·p1+[x2-E(X)]2·p2+…+[xn-E(X)]2·pn,标准差为eq\r(DX).5.方差的性质(1)D(aX+b)=a2D(X);(2)若X~B(n,p),则D(X)=np(1-p).易错起源4、抽样方法例4、(1)某月月底,某商场想通过抽取发票存根的方法估计该月的销售总额.先将该月的全部销售发票的存根进行了编号,1,2,3,…,然后拟采用系统抽样的方法获取一个样本.若从编号为1,2,3,…,10的前10张发票的存根中随机抽取1张,然后再按系统抽样的方法依编号顺序逐次产生第2张、第3张、第4张、……,则抽样中产生的第2张已编号的发票存根,其编号不可能是()A.13 B.17C.19 D.23(2)为了研究雾霾天气的治理,某课题组对部分城市进行空气质量调查,按地域特点把这些城市分成甲、乙、丙三组,已知三组城市的个数分别为4,y,z,依次构成等差数列,且4,y,z+4成等比数列,若用分层抽样抽取6个城市,则乙组中应抽取的城市个数为________.答案(1)D(2)2解析(1)因为第一组的编号为1,2,3,…,10,所以根据系统抽样的定义可知第二组的编号为11,12,13,…,20,故第2张已编号的发票存根的编号不可能为23.(2)由题意可得eq\b\lc\{\rc\(\a\vs4\al\co1(2y=4+z,,y2=4×z+4,))即eq\b\lc\{\rc\(\a\vs4\al\co1(y=2+\f(z,2),,y2=4z+16,))解得z=12,或z=-4(舍去),故y=8.所以甲、乙、丙三组城市的个数分别为4,8,12.因为一共要抽取6个城市,所以抽样比为eq\f(6,4+8+12)=eq\f(1,4).故乙组城市应抽取的个数为8×eq\f(1,4)=2.【变式探究】(1)要考察某公司生产的500克袋装牛奶中三聚氰胺的含量是否超标,现从800袋牛奶中抽取60袋进行检验,利用随机数法抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第7行第8列的数开始向右读,则得到的第4个样本个体的编号是________.(下面摘取了随机数表第7行至第9行)84421753315724550688770474476721763350258392120676(第7行)63016378591695556719981050717512867358074439523879(第8行)33211234297864560782524207443815510013429966027954(第9行)(2)利用分层抽样的方法在学生总数为1200人的年级中抽出20名同学,其中有女生8人,则该年级男生的人数约为________.答案(1)068(2)720解析(1)由随机数法可知抽取样本个体的编号为331,572,455,068,…,故第4个样本个体的编号为068.(2)由于样本容量为20,其中的男生人数为12,从而该年级男生人数约为1200×eq\f(12,20)=720.【名师点睛】(1)随机抽样各种方法中,每个个体被抽到的概率都是相等的;(2)系统抽样又称“等距”抽样,被抽到的各个号码间隔相同;(3)分层抽样满足:各层抽取的比例都等于样本容量在总体容量中的比例.【锦囊妙计,战胜自我】1.简单随机抽样特点是从总体中逐个抽取.适用范围:总体中的个体数较少.2.系统抽样特点是将总体均分成几部分,按事先确定的规则在各部分中抽取.适用范围:总体中的个体数较多.3.分层抽样特点是将总体分成几层,分层进行抽取.适用范围:总体由差异明显的几部分组成.易错起源5、用样本估计总体例5、(1)在某次测量中得到的A样本数据如下:42,43,46,52,42,50,若B样本数据恰好是A样本数据每个都减5后所得数据,则A,B两样本的下列数字特征对应相同的是()A.平均数 B.标准差C.众数 D.中位数(2)若五个数1,2,3,4,a的平均数为3,则这五个数的标准差是________.答案(1)B(2)eq\r(2)【变式探究】(1)某学生在一门功课的22次考试中,所得分数茎叶图如图所示,则此学生该门功课考试分数的极差与中位数之和为()A.117 B.118C.118.5 D.119.5(2)某学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n且支出在[20,60]元的样本,其频率分布直方图如图所示,其中支出在[50,60]元的学生有30人,则n的值为()A.100 B.1000C.90 D.900答案(1)B(2)A解析(1)22次考试中,所得分数最高的为98,最低的为56,所以极差为98-56=42,将分数从小到大排列,中间两数为76,76,所以中位数为76,所以此学生该门功课考试分数的极差与中位数之和为42+76=118.(2)支出在[50,60]元的频率为1-0.1-0.24-0.36=0.3,所以n=30÷0.3=100,故选A.【名师点睛】(1)反映样本数据分布的主要方式:频率分布表、频率分布直方图、茎叶图.关于频率分布直方图要明确每个小矩形的面积即为对应的频率,其高低能够描述频率的大小,高考中常常考查频率分布直方图的基本知识,同时考查借助频率分布直方图估计总体的概率分布和总体的特征数,具体问题中要能够根据公式求解数据的平均数、众数、中位数和方差等.(2)由样本数据估计总体时,样本方差越小,数据越稳定,波动越小.【锦囊妙计,战胜自我】1.频率分布直方图中横坐标表示组距,纵坐标表示eq\f(频率,组距),频率=组距×eq\f(频率,组距).2.频率分布直方图中各小长方形的面积之和为1.3.利用频率分布直方图求众数、中位数与平均数利用频率分布直方图求众数、中位数和平均数时易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.易错起源6、统计案例例6、(1)高三年级267位学生参加期末考试,某班37位学生的语文成绩、数学成绩与总成绩在全年级中的排名情况如图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是________;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是________.(2)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是()表1成绩性别不及格及格总计男61420女102232总计163652表2视力性别好差总计男41620女122032总计163652表3智商性别偏高正常总计男81220女82432总计163652表4阅读量性别丰富不丰富总计男14620女23032总计163652A.成绩B.视力C.智商D.阅读量答案(1)①乙②数学(2)D解析(1)①由散点图可知:越靠近坐标原点O名次越好,乙同学语文成绩好,而总成绩年级名次靠后;而甲同学语文成绩名次比总成绩名次差,所以应是乙同学语文成绩名次比总成绩名次靠前.②丙同学总成绩年级名次比数学成绩年级名次差,所以丙同学成绩名次更靠前的是数学.(2)根据数据求出K2的值,再进一步比较大小.A中,a=6,b=14,c=10,d=22,a+b=20,c+d=32,a+c=16,b+d=36,n=52,K2=eq\f(52×6×22-14×102,20×32×16×36)=eq\f(13,1440).B中,a=4,b=16,c=12,d=20,a+b=20,c+d=32,a+c=16,b+d=36,n=52,K2=eq\f(52×4×20-16×122,20×32×16×36)=eq\f(637,360).C中,a=8,b=12,c=8,d=24,a+b=20,c+d=32,a+c=16,b+d=36,n=52,K2=eq\f(52×8×24-12×82,20×32×16×36)=eq\f(13,10).D中,a=14,b=6,c=2,d=30,a+b=20,c+d=32,a+c=16,b+d=36,n=52,K2=eq\f(52×14×30-6×22,20×32×16×36)=eq\f(3757,160).∵eq\
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版港口工程保险合同3篇
- 二零二五版涵洞工程环保监测合同3篇
- 二零二五版反担保合同模板:供应链金融3篇
- 二零二五年计时工劳动合同管理与心理关怀协议3篇
- 二零二五年度软件开发项目合同及其廉洁规定2篇
- 二零二五版教育SaaS平台软件服务合同3篇
- 二零二五版粉煤灰运输安全规范与应急预案编制合同3篇
- 二零二五年度特种饲料原料采购合同模板2篇
- 二零二五年防火墙安全防护系统集成与维护合同3篇
- 二零二五年度大数据中心建设与运营劳务分包合同3篇
- 2024版塑料购销合同范本买卖
- 【高一上】【期末话收获 家校话未来】期末家长会
- JJF 2184-2025电子计价秤型式评价大纲(试行)
- 二年级下册加减混合竖式练习360题附答案
- 2021年道路交通安全法期末考试试题含答案
- 股东变更情况报告表
- 自带药物治疗告知书
- 房产中介门店6S管理规范
- 吞咽解剖和生理研究
- TSG11-2020 锅炉安全技术规程
- 异地就医备案个人承诺书
评论
0/150
提交评论