版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题1.4空间向量及其运算的坐标表示【八大题型】【人教A版(2019)】TOC\o"1-3"\h\u【题型1求空间点的坐标】 1【题型2空间向量运算的坐标表示】 2【题型3空间向量数量积运算的坐标表示】 3【题型4根据空间向量的坐标运算求参数】 3【题型5空间向量模长的坐标表示】 4【题型6空间向量平行的坐标表示】 6【题型7空间向量垂直的坐标表示】 7【题型8空间向量夹角余弦的坐标表示】 8【知识点1空间直角坐标系】1.空间直角坐标系(1)空间直角坐标系及相关概念①空间直角坐标系:在空间选定一点O和一个单位正交基底eq\b\lc\{\rc\}(\a\vs4\al\co1(i,j,k)),以O为原点,分别以i,j,k的方向为正方向,以它们的长为单位长度建立三条数轴:x轴、y轴、z轴,它们都叫做坐标轴,这时我们就建立了一个空间直角坐标系O-xyz.②相关概念:O叫做原点,i,j,k都叫做坐标向量,通过每两个坐标轴的平面叫做坐标平面,分别称为Oxy平面、Oyz平面、Ozx平面,它们把空间分成八个部分.(2)右手直角坐标系在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,则称这个坐标系为右手直角坐标系.2.空间一点的坐标在空间直角坐标系O-xyz中,i,j,k为坐标向量,对空间任意一点A,对应一个向量eq\o(OA,\s\up6(→)),且点A的位置由向量eq\o(OA,\s\up6(→))唯一确定,由空间向量基本定理,存在唯一的有序实数组(x,y,z),使eq\o(OA,\s\up6(→))=xi+yj+zk.在单位正交基底{i,j,k}下与向量eq\o(OA,\s\up6(→))对应的有序实数组(x,y,z)叫做点A在此空间直角坐标系中的坐标,记作A(x,y,z),其中x叫做点A的横坐标,y叫做点A的纵坐标,z叫做点A的竖坐标.【题型1求空间点的坐标】【例1】(2023春·山东青岛·高二校联考期中)空间直角坐标系中,已知A−1,1,3,则点A关于yOz平面的对称点的坐标为(
)A.1,1,−3 B.−1,−1,−3 C.1,1,3 D.−1,−1,3【变式1-1】(2023秋·陕西宝鸡·高二统考期末)已知点A(3,−1,0),若向量AB=−1,6,−3,则点B的坐标是(A.(1,−6,3) B.(5,4,−3) C.(−1,6,−3) D.(2,5,−3)【变式1-2】(2023秋·北京怀柔·高二统考期末)若点A1,2,3,点B4,−1,0,且AC=2CB,则点A.3,0,1 B.2,1,2C.32,−3【变式1-3】(2023·高二单元测试)在空间直角坐标系中,已知点P(x,y,z)下列叙述中正确的是(
)①点P关于x轴的对称点是P②点P关于yOz平面的对称点是P③点P关于y轴的对称点是P④点P关于原点的对称点是PA.①② B.①③ C.②④ D.②③【知识点2空间向量的坐标运算】1.空间向量的坐标在空间直角坐标系Oxyz中,给定向量a,作eq\o(OA,\s\up6(→))=a.由空间向量基本定理,存在唯一的有序实数组(x,y,z),使a=xi+yj+zk.有序实数组(x,y,z)叫做a在空间直角坐标系O-xyz中的坐标,上式可简记作a=(x,y,z).2.空间向量的坐标运算设a=(a1,a2,a3),b=(b1,b2,b3),有向量运算向量表示坐标表示加法a+ba+b=(a1+b1,a2+b2,a3+b3)减法a-ba-b=(a1-b1,a2-b2,a3-b3)数乘λaλa=(λa1,λa2,λa3),λ∈R数量积a·ba·b=a1b1+a2b2+a3b3【题型2空间向量运算的坐标表示】【例2】(2023春·全国·高二校联考开学考试)已知向量a=3,−4,2,b=2,−3,1,则A.7,−10,4 B.5,−7,3 C.1,−1,1 D.−1,2,0【变式2-1】(2023秋·江西吉安·高二校考期末)已知向量AB=2,A.−2,−2,−2 B.(8,15,3)【变式2-2】(2022·全国·高二专题练习)已知向量a=2,3,−4,b=A.0,3,−6 B.0,6,−20 C.0,6,−6 D.6,6,−6【变式2-3】(2022秋·河南信阳·高二校考阶段练习)在空间四边形ABCD中,若向量AB=(﹣3,5,2),CD=(﹣7,-1,﹣4),点E,F分别为线段BC,AD的中点,则EF的坐标为(
)A.(2,3,3) B.(﹣2,﹣3,﹣3)C.(5,﹣2,1) D.(﹣5,2,﹣1)【题型3空间向量数量积运算的坐标表示】【例3】(2022·全国·高二专题练习)若A(2,−4,−1),B(−1,5,1),C(3,−4,1),则CA⋅CB=A.-11 B.3 C.4 D.15【变式3-1】(2023春·高二课时练习)若a=2,3,2,b=A.−1 B.0 C.1 D.2【变式3-2】(2023春·山东济宁·高三校考阶段练习)已知棱长为1的正方体ABCD−A1B1C1D1的上底面A.-1 B.0 C.1 D.2【变式3-3】(2022春·广西桂林·高二校考期中)已知正六棱柱ABCDEF−A1B1C1DA.(−12,C.(−12,1)【题型4根据空间向量的坐标运算求参数】【例4】(2022秋·广东江门·高二校考期中)a=(2,-1,3),b=(-1,4,-2),c=(3,2,λ),若c=2a+b,则实数A.2 B.3 C.4 D.5【变式4-1】(2022秋·广西南宁·高二校考期中)已知a=−3,2,5,b=1,x,−1,且A.6 B.5 C.4 D.3【变式4-2】(2023秋·北京丰台·高二校考期末)若向量a=(1,−1,λ),b=(1,−2,1),c=(1,1,1),满足条件(A.−1 B.−2 C.1 D.2【变式4-3】(2023秋·河南郑州·高二校考阶段练习)已知点A1,−1,2,B2,−1,1,C3,3,2,又点Px,7,−2在平面ABC内,则A.11 B.9 C.1 D.−4【知识点3用空间向量的坐标运算解决相关的几何问题】1.空间向量的平行、垂直及模、夹角设a=(a1,a2,a3),b=(b1,b2,b3),则有当b≠0时,a∥b⇔a=λb⇔a1=λb1,a2=λb2,a3=λb3(λ∈R);a⊥b⇔a·b=0⇔a1b1+a2b2+a3b3=0;|a|=eq\r(a·a)=eq\r(a\o\al(2,1)+a\o\al(2,2)+a\o\al(2,3));cos〈a,b〉=eq\f(a·b,|a||b|)=eq\f(a1b1+a2b2+a3b3,\r(a\o\al(2,1)+a\o\al(2,2)+a\o\al(2,3))\r(b\o\al(2,1)+b\o\al(2,2)+b\o\al(2,3))).2.空间两点间的距离公式设P1(x1,y1,z1),P2(x2,y2,z2)是空间中任意两点,则P1P2=|eq\o(P1P2,\s\up6(→))|=eq\r(x2-x12+y2-y12+z2-z12).3.利用空间向量基本定理解决几何问题的思路:(1)平行和点共线都可以转化为向量共线问题;点线共面可以转化为向量共面问题;(2)几何中的求夹角、证明垂直都可以转化为向量的夹角问题,解题中要注意角的范围;(3)几何中求距离(长度)都可以转化为向量的模,用空间向量的坐标运算可以求得.【题型5空间向量模长的坐标表示】【例5】(2023春·高二课时练习)如图,在棱长为1的正方体ABCD-A1B1C1D1中,E,F分别为D1D,BD的中点,G在棱CD上,且CG=14CD,H为C1G【变式5-1】(2023春·福建龙岩·高二校联考期中)如图,在直四棱柱ABCD−A1B1C1D1中,AB//CD,AB⊥AD,AA1=AB=2AD=2CD=4
(1)求线段FG的长度;(2)求CG⋅【变式5-2】(2023春·福建龙岩·高二校考阶段练习)如图,在直三棱柱ABC−A1B1C1中,CA=CB=1,∠BCA=90°,AA(1)求M,N的距离;(2)求cosB【变式5-3】(2022秋·福建·高二校联考阶段练习)已知空间三点,A0,2,3,B−(1)求以AB,AC为边的平行四边形的面积;(2)若AD=7,且∠DAB=∠DAC=60°,点P【题型6空间向量平行的坐标表示】【例6】(2023春·高二课时练习)已知空间三点A(−2,0,2),B(−1,1,2),C(−3,0,4),设a=AB,b=【变式6-1】(2022·高二课时练习)已知A(3,4,0),B(2,5,5),C(0,3,5),且ABCD是平行四边形,求顶点D的坐标.【变式6-2】(2023春·上海浦东新·高二统考期末)已知a=1,4,−2,(1)若c=12(2)若ka+b【变式6-3】(2022·高二课时练习)正方体ABCDA1B1C1D1中,E是棱D1D的中点,P、Q分别为线段B1D1,BD上的点,且3B1P=PD1,若PQ⊥AE,BD【题型7空间向量垂直的坐标表示】【例7】(2023春·高二单元测试)已知空间三点A(−2,0,2),B(−1,1,2),C(−3,0,4),设a=AB,b=AC.若m(a【变式7-1】(2023春·江苏连云港·高二校考阶段练习)已知a=3,2,−1,(1)求a−(2)当a−b⊥【变式7-2】(2023春·江苏连云港·高二校联考期中)已知空间中三点A2,0,−2,B1,−1,3,C3,0,1,设a(1)若c=3,且c∥BC(2)已知向量a+kb与b【变式7-3】(2023秋·江西吉安·高二校考期末)已知a=1,−4,5,b=−2,3,2,点(1)求2a(2)在线段AB上,是否存在一点E,使得OE⊥b?若存在,求出点E的坐标;若不存在,请说明理由.(【题型8空间向量夹角余弦的坐标表示】【例8】(2023春·高二课时练习)如图,在棱长为1的正方体ABCD-A1B1C1D1中,E,F分别为D1D,BD的中点,G在棱CD上,且CG=14CD【变式8-1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 马鞍山职业技术学院《艺术形态采集课程设计》2023-2024学年第一学期期末试卷
- 吕梁学院《成本会计模拟》2023-2024学年第一学期期末试卷
- 2024年临时活动场地租赁合同范本
- 2025年南宁货车资格证试题及答案
- 2024年个人担保书填写说明3篇
- 2024年上门女婿财产分割及婚姻关系解除协议书3篇
- 洛阳文化旅游职业学院《池塘养殖学A》2023-2024学年第一学期期末试卷
- 2024年水利工程劳务分包协议样本
- 单位人事管理制度精彩选集
- 办公物业招投标攻略流程掌握
- 盘扣支模架工程监理细则
- 城乡历史文化保护传承体系综合管理平台方案
- (正式版)SH∕T 3006-2024 石油化工控制室设计规范
- 2023年新版医学心理学试题库
- 重庆市黔江区2022-2023学年七年级上学期期末考试数学试题
- DL-T5054-2016火力发电厂汽水管道设计规范
- 城市生命线安全风险综合监测预警平台解决方案
- 交响音乐赏析智慧树知到期末考试答案章节答案2024年西安交通大学
- 中药独活课件
- 企业EHS风险管理基础智慧树知到期末考试答案章节答案2024年华东理工大学
- 2024年黄河水利职业技术学院单招职业适应性测试题库全面
评论
0/150
提交评论