




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
何时获得最大利润
顶点式,对称轴和顶点坐标公式:利润=售价-进价.总利润=每件利润×销售数量.二次函数y=ax2+bx+c(a≠0)的性质忆一忆请你帮助分析:销售单价是多少时,可以获利最多?某商店经营T恤衫,成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.何时获得最大利润设销售价为x元(x≤13.5元),那么某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与单价满足如下关系:在一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.销售量可表示为:件销售额可表示为:元所获利润可表示为:元当销售单价为元时,可以获得最大利润,最大利润是元.何时获得最大利润x-56789101112131415-y--6037560420604556048060495605006049560480604556042060375y=-5x²+100x+60000你能根据表格中的数据作出猜测吗?何时橙子总产量最大还记得本章一开始涉及的“种多少棵橙子树”的问题吗?我们还曾经利用列表的方法得到一个数据.现在请你验证一下你的猜测(增种多少棵橙子树时,总产量最大?)是否正确.与同伴进行交流你是怎么做的.某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.增种多少棵橙子树时,总产量最大?如果设果园增种x棵橙子树,总产量为y个,则何时橙子总产量最大某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.1.利用函数表达式描述橙子的总产量x与增种橙子树的棵数y之间的关系.2.增种多少棵橙子,可以使橙子的总产量在60400个以上?何时橙子总产量最大
某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润?随堂练习若你是商店经理,你需要多长时间定出这个销售单价?解:设提高售价x元,在半个月内获得的利润是y元.
根据题意,得设旅行团人数为x人,营业额为y元,则
某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额?习题你知道吗,平时我们在跳大绳时,绳甩到最高处的形状可以看为抛物线.如图,正在甩绳的甲乙两名学生拿绳的手间距为4米,距地面均为1米,学生丙丁分别站在距甲拿绳的手水平距离1米2.5米处,绳子到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5米,求学生丁的身高?函数y=ax2+bx+c(a≠0)的应用甲乙丙丁(-2.1)(2.1)(-1,1.5)(1)如果不计其它因素,那么水池的半径至少要多少m,才能使喷出的水流不致落到池外?(2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m,要使水流不落到池外,此时水流的最大高度应达到多少m(精确到0.1m)?喷泉与二次函数如图所示,某公园要建造圆形喷水池.在水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m.由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1m处达到距水面最大高度2.25m.根据对称性,如果不计其它因素,那么水池的半径至少要2.5m,才能使喷出的水流不致落到池外.解:(1)如图,建立如图所示的坐标系,根据题意得,A点坐标为(0,1.25),顶点B坐标为(1,2.25).当y=0时,可求得点C的坐标为(2.5,0);同理,点D的坐标为(-2.5,0).设抛物线为y=a(x-h)2+k,由待定系数法可求得抛物线表达式为:y=-(x-1)2+2.25.数学化xyOA●B(1,2.25)●(0,1.25)
●C(2.5,0)●D(-2.5,0)喷泉与二次函数由此可知,如果不计其它因素,水流的最大高度应达到约3.72m.解:(2)如图,根据题意得,A点坐标为(0,1.25),点C坐标为(3.5,0).或设抛物线为y=-x2+bx+c,由待定系数法可求得抛物线表达式为:y=-x2+22/7+5/4.设抛物线为y=-(x-h)2+k,由待定系数法可求得抛物线表达式为:y=-(x-11/7)2+729/196.数学化xyOA●B●(0,1.25)●C(3.5,0)●D(-3.5,0)●B(1.57,3.72)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m,要使水流不落到池外,此时水流的最大高度应达到多少m(精确到0.1m)?喷泉与二次函数(1)写出售价x(元/件)与每天所得利润y(元)之间的函数关系式;(2)每件定价多少元时,才能使一天的利润最大?商贩何时获得最大利润
某人开始时,将进价为8元的某种商品按每件10元销售,每天可售出100件.他想采用提高最大售价的办法来增加利润.经试验,发现这种商品每件每提价1元,每天的销售量就会减少10件.某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40元~70元之间.市场调查发现:若每箱按50元销售,平均每天可售出90箱,价格每降低1元,平均每天多销售3箱;价格每升高1元平均每天少销售3箱.纯牛奶何时利润最大(1)写出售价x(元/箱)与每天所得利润w(元)之间的函数关系式(2)每箱定价多少元,才使平均每天利润最大?最大利润是多少?每箱定价60元,平均每天利润最大,最大利润是1200元
某化工材料经销公司购进了一种化工原料共700千克,已知进价为30元/千克,物价部门规定其销售价在30元70元之间.市场调查发现:若单价定为70元时,日均销售60千克.价格每降低1元,平均每天多售出2千克.在销售过程中,每天还要支出其它费用500元(天数不足一天时,按整天计算).求销售单价为x(元/千克)与日均获利y(元)之间的函数关系式,并注明x的取值范围(提示:日均获利=每千克获利与×均销售量-其它费用)和获得的最大利润.化工材料何时利润最大(1)写出售价x(元/千克)与月销售利润y(元)之间的函数关系式;(2)当销售单价定为55元时,计算出月销售量和销售利润;(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?某商店销售一种成本为40元的水产品,若按50元/千克销售,一月可售出500千克,销售价每涨价1元,月销售量就减少10千克.水产品何时利润最大某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是经过原点O的一条抛物线.在跳某规定动作时,正常情况下,该运动员在空中的最高处距水面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五幼儿园园长挂名免责协议书
- 二零二五科研合作协议书范例
- 校园施工安全协议责任书范文
- 房产中介房屋钥匙托管协议
- 永康市事业单位招聘工作人员真题2024
- 湖北省公考真题2024
- 2024年灯塔市市属事业单位考试真题
- 企业级安全培训考试题附答案【综合题】
- 公司项目负责人安全培训考试题【典优】
- 车间职工安全培训试题汇编
- DB32T 5003-2025小微型和劳动密集型工业企业现场安全管理规范
- 与孩子一起成长(家庭教育课件)
- 铁缺乏症和缺铁性贫血诊治和预防的多学科专家共识(2022年版)
- 斯蒂芬·P·罗宾斯-组织行为学笔记14版(自己整理)
- 植保无人机基础知识试题含答案
- 砂(碎石)垫层施工作业指导书
- 黑红色简约风《白夜行》名著导读好书推荐PPT模板
- 吉春亚神奇的汉字-完整版PPT
- 上海市初三数学竞赛(大同杯)试题
- 付款审批表(标准样本)
- 《船舶安全检查表》word版
评论
0/150
提交评论