




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
空间向量及其加减运算第1页,课件共24页,创作于2023年2月在必修4中,我们已经学习了平面向量,你还知道下列几个问题是怎么定义的吗?(1)什么叫向量?(2)什么是向量的长度(或模)?(3)什么叫零向量、单位向量、相反向量、相等向量?(4)向量的表示方法有哪些?复习回顾:思考:在空间中,上述问题又是如何定义的呢?第2页,课件共24页,创作于2023年2月1.空间向量定义在空间,把具有
和
的量叫做空间向量长度向量的
叫做向量的长度或
.表示法几何表示法空间向量用
表示字母表示法大小方向大小有向线段模第3页,课件共24页,创作于2023年2月2.几类特殊向量(1)零向量:
的向量叫做零向量,记为0.(2)单位向量:
的向量称为单位向量.(3)相等向量:方向
且模
的向量称为相等向量.在空间,同向且等长的有向线段表示同一向量或相等向量.(4)相反向量:与向量a长度
而方向
的向量,称为a的相反向量,记为-a.长度为0模为1相同相等相等相反第4页,课件共24页,创作于2023年2月3.空间向量的加减法与运算律a+b
a-b
b+a(a+c)+b
第5页,课件共24页,创作于2023年2月答案:
C第6页,课件共24页,创作于2023年2月2.在平面向量中,下列说法正确的是(
)A.如果两个向量的长度相等,那么这两个向量相等B.如果两个向量平行,那么这两个向量的方向相同C.如果两个向量平行并且它们的模相等,那么这两个向量相等D.同向且等长的有向线段表示同一向量解析:
根据两个向量相等的定义可知,选项D正确.答案:
D第7页,课件共24页,创作于2023年2月答案:
相等相反第8页,课件共24页,创作于2023年2月第9页,课件共24页,创作于2023年2月A.1
B.2C.3 D.4第10页,课件共24页,创作于2023年2月[解题过程]
题号正误原因分析①×当两向量的起点相同,终点也相同时,这两个向量必相等,但两个向量相等不一定起点相同,终点相同②×向量相等的定义,模相等,而且方向相同③√④√由向量平行(共线)的性质可知⑤×空间中任意两个单位向量的模均为1,但方向不一定相同,故不一定相等答案:
C第11页,课件共24页,创作于2023年2月答案:
B第12页,课件共24页,创作于2023年2月第13页,课件共24页,创作于2023年2月第14页,课件共24页,创作于2023年2月第15页,课件共24页,创作于2023年2月第16页,课件共24页,创作于2023年2月证明平行六面体的对角线交于一点,并且在交点处相互平分.第17页,课件共24页,创作于2023年2月[规范作答]
证明:如图所示,平行六面体ABCD-A′B′C′D′,设点O是AC′的中点,第18页,课件共24页,创作于2023年2月第19页,课件共24页,创作于2023年2月[题后感悟]
利用向量解决立体几何中的问题的一般思路:第20页,课件共24页,创作于2023年2月第21页,课件共24页,创作于2023年2月2.空间向量加法运算的理解(1)首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量.因此,求空间若干向量之和时,可通过平移将它们转化为首尾相接的向量.(2)若首尾相接的若干向量构成一个封闭图形,则这些向量的和为0.(3)两个向量相加的三角形法则、平行四边形法则在空间中仍成立.第22页,课件共24页,创作于2023年2月3.熟练应用三角形法则和平行四边形法则(1)利用三角形法则进行加法运算时,注意“首尾相连”和向量的方向是从第一个向量的起点指向第二个向量的终点.进行减法运算时,注意“共起点”,差向量的方向是从减向量的终点指向被减向量的终点.(2)平行四边形法则一般用来进行向量的加法运算.注意:平行四边形的两条对角线所表示的向量恰为两邻边表示向量的和与差.(3)三角形法则也可推广为多边形法则:即在空间中,把有限个向量顺次首尾相连,则从第一个向量的起点指向最后一个向量终点的向量即表示这有限个向量的和向量.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 聚焦2025年:康复医疗器械市场细分领域需求与产品创新策略应用报告
- 金融行业客户关系管理数字化升级2025年跨渠道协同策略研究报告
- 量子计算技术在金融风险模拟中的大数据分析与风险管理研究报告
- 中成药、中药制剂临床应用考核试题及答案
- 2025年押运员个人半年总结汇报
- 门市房租赁合同资料15篇
- 新疆2025年注册内审师《内部审计作用》:公司治理的基本框架考试试题
- 设计劳务分包合同示范文本2025年
- 销售人员年终工作总结2025年
- 三方监理合同范本模板(2025版)
- 高中等学校毕业生见习期考核 鉴 定 表
- 上海娄山中学小升初数学期末试卷测试卷(解析版)
- 基于分数阶微积分的岩石非线性蠕变本构模型研究及其在Flac3D中的二次开发
- 变电站设备巡视课件
- 货运司机劳动合同范文5篇
- 贵州省公民文明手册
- GB/T 28137-2011农药持久起泡性测定方法
- 青蓝工程师徒结对师傅总结9篇
- GB 4696-2016中国海区水上助航标志
- 高空作业安全培训课程课件
- 农业行政处罚中违法所得实务分析课件
评论
0/150
提交评论