杜宾斯基的APOS理论_第1页
杜宾斯基的APOS理论_第2页
杜宾斯基的APOS理论_第3页
杜宾斯基的APOS理论_第4页
杜宾斯基的APOS理论_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

APOS:AConstructivistTheoryofLearning

inUndergraduateMathematicsEducationResearch

EdDubinsky,GeorgiaStateUniversity,USA

and

MichaelA.McDonald,OccidentalCollege,USA

Theworkreportedinthispaperisbasedontheprinciplethatresearchinmathematicseducation

isstrengthenedinseveralwayswhenbasedonatheoreticalperspective.Developmentofatheoryor

modelinmathematicseducationshouldbe,inourview,partofanattempttounderstandhow

mathematicscanbelearnedandwhataneducationalprogramcandotohelpinthislearning.Wedo

notthinkthatatheoryoflearningisastatementoftruthandalthoughitmayormaynotbean

approximationtowhatisreallyhappeningwhenanindividualtriestolearnoneoranotherconceptin

mathematics,thisisnotourfocus.Ratherweconcentrateonhowatheoryoflearningmathematics

canhelpusunderstandthelearningprocessbyprovidingexplanationsofphenomenathatwecan

observeinstudentswhoaretryingtoconstructtheirunderstandingsofmathematicalconceptsandby

suggestingdirectionsforpedagogythatcanhelpinthislearningprocess.

Modelsandtheoriesinmathematicseducationcan

•supportprediction,

•haveexplanatorypower,

•beapplicabletoabroadrangeofphenomena,

•helporganizeone’sthinkingaboutcomplex,interrelatedphenomena,

•serveasatoolforanalyzingdata,and

•providealanguageforcommunicationofideasaboutlearningthatgobeyondsuperficial

descriptions.

Wewouldliketoofferthesesixfeatures,thefirstthreeofwhicharegivenbyAlanSchoenfeldin

“Towardatheoryofteaching-in-context,”IssuesinEducation,bothaswaysinwhichatheorycan

contributetoresearchandascriteriaforevaluatingatheory.

1

Inthispaper,wedescribeonesuchperspective,APOSTheory,inthecontextofundergraduate

mathematicseducation.Weexplaintheextenttowhichithastheabovecharacteristics,discussthe

rolethatthistheoryplaysinaresearchandcurriculumdevelopmentprogramandhowsuchaprogram

cancontributetothedevelopmentofthetheory,describebrieflyhowworkingwiththisparticular

theoryhasprovidedavehicleforbuildingacommunityofresearchersinundergraduatemathematics

education,andindicatetheuseofAPOSTheoryinspecificresearchstudies,bothbyresearcherswho

aredevelopingitaswellasothersnotconnectedwithitsdevelopment.Weprovide,inconnection

withthispaper,anannotatedbibliographyofresearchreportswhichinvolvethistheory.

APOSTheory

Thetheorywepresentbeginswiththehypothesisthatmathematicalknowledgeconsistsinan

individual’stendencytodealwithperceivedmathematicalproblemsituationsbyconstructingmental

actions,processes,andobjectsandorganizingtheminschemastomakesenseofthesituationsand

solvetheproblems.InreferencetothesementalconstructionswecallitAPOSTheory.Theideas

arisefromourattemptstoextendtothelevelofcollegiatemathematicslearningtheworkofJ.Piaget

onreflectiveabstractioninchildren’slearning.APOSTheoryisdiscussedindetailinAsiala,et.al.

(1996).Wewillarguethatthistheoreticalperspectivepossesses,atleasttosomeextent,the

characteristicslistedaboveand,moreover,hasbeenveryusefulinattemptingtounderstandstudents’

learningofabroadrangeoftopicsincalculus,abstractalgebra,statistics,discretemathematics,and

otherareasofundergraduatemathematics.Hereisabriefsummaryoftheessentialcomponentsofthe

theory.

Anactionisatransformationofobjectsperceivedbytheindividualasessentiallyexternaland

asrequiring,eitherexplicitlyorfrommemory,step-by-stepinstructionsonhowtoperformthe

operation.Forexample,anindividualwithanactionconceptionofleftcosetwouldberestrictedto

workingwithaconcretegroupsuchasZ20andheorshecouldconstructsubgroups,suchas

H={0,4,8,12,16}byformingthemultiplesof4.Thentheindividualcouldwritetheleftcosetof5as

theset5+H={1,5,9,13,17}consistingoftheelementsofZ20whichhaveremaindersof1whendivided

by4.

2

Whenanactionisrepeatedandtheindividualreflectsuponit,heorshecanmakeaninternal

mentalconstructioncalledaprocesswhichtheindividualcanthinkofasperformingthesamekindof

action,butnolongerwiththeneedofexternalstimuli.Anindividualcanthinkofperforminga

processwithoutactuallydoingit,andthereforecanthinkaboutreversingitandcomposingitwith

otherprocesses.Anindividualcannotusetheactionconceptionofleftcosetdescribedabovevery

effectivelyforgroupssuchasS4,thegroupofpermutationsoffourobjectsandthesubgroupH

correspondingtothe8rigidmotionsofasquare,andnotatallforgroupsSnforlargevaluesofn.In

suchcases,theindividualmustthinkoftheleftcosetofapermutationpasthesetofallproductsph,

wherehisanelementofH.Thinkingaboutformingthissetisaprocessconceptionofcoset.

Anobjectisconstructedfromaprocesswhentheindividualbecomesawareoftheprocessasa

totalityandrealizesthattransformationscanactonit.Forexample,anindividualunderstandscosets

asobjectswhenheorshecanthinkaboutthenumberofcosetsofaparticularsubgroup,canimagine

comparingtwocosetsforequalityorfortheircardinalities,orcanapplyabinaryoperationtothesetof

allcosetsofasubgroup.

Finally,aschemaforacertainmathematicalconceptisanindividual’scollectionofactions,

processes,objects,andotherschemaswhicharelinkedbysomegeneralprinciplestoforma

frameworkintheindividual’smindthatmaybebroughttobearuponaproblemsituationinvolving

thatconcept.Thisframeworkmustbecoherentinthesensethatitgives,explicitlyorimplicitly,

meansofdeterminingwhichphenomenaareinthescopeoftheschemaandwhicharenot.Because

thistheoryconsidersthatallmathematicalentitiescanberepresentedintermsofactions,processes,

objects,andschemas,theideaofschemaisverysimilartotheconceptimagewhichTallandVinner

introducein“Conceptimageandconceptdefinitioninmathematicswithparticularreferencetolimits

andcontinuity,”EducationalStudiesinMathematics,12,151-169(1981).Ourrequirementof

coherence,however,distinguishesthetwonotions.

Thefourcomponents,action,process,object,andschemahavebeenpresentedhereina

hierarchical,orderedlist.Thisisausefulwayoftalkingabouttheseconstructionsand,insomesense,

eachconceptioninthelistmustbeconstructedbeforethenextstepispossible.Inreality,however,

whenanindividualisdevelopingherorhisunderstandingofaconcept,theconstructionsarenot

3

actuallymadeinsuchalinearmanner.Withanactionconceptionoffunction,forexample,an

individualmaybelimitedtothinkingaboutformulasinvolvingletterswhichcanbemanipulatedor

replacedbynumbersandwithwhichcalculationscanbedone.Wethinkofthisnotionasprecedinga

processconception,inwhichafunctionisthoughtofasaninput-outputmachine.Whatactually

happens,however,isthatanindividualwillbeginbybeingrestrictedtocertainspecifickindsof

formulas,reflectoncalculationsandstartthinkingaboutaprocess,gobacktoanactioninterpretation,

perhapswithmoresophisticatedformulas,furtherdevelopaprocessconceptionandsoon.Inother

words,theconstructionofthesevariousconceptionsofaparticularmathematicalideaismoreofa

dialecticthanalinearsequence.

APOSTheorycanbeuseddirectlyintheanalysisofdatabyaresearcher.Inveryfinegrained

analyses,theresearchercancomparethesuccessorfailureofstudentsonamathematicaltaskwiththe

specificmentalconstructionstheymayormaynothavemade.Ifthereappeartwostudentswhoagree

intheirperformanceuptoaveryspecificmathematicalpointandthenonestudentcantakeafurther

stepwhiletheothercannot,theresearchertriestoexplainthedifferencebypointingtomental

constructionsofactions,processes,objectsand/orschemasthattheformerstudentappearstohave

madebuttheotherhasnot.Thetheorythenmakestestablepredictionsthatifaparticularcollectionof

actions,processes,objectsandschemasareconstructedinacertainmannerbyastudent,thenthis

individualwilllikelybesuccessfulusingcertainmathematicalconceptsandincertainproblem

situations.Detaileddescriptions,referredtoasgeneticdecompositions,ofschemasintermsofthese

mentalconstructionsareawayoforganizinghypothesesabouthowlearningmathematicalconcepts

cantakeplace.Thesedescriptionsalsoprovidealanguagefortalkingaboutsuchhypotheses.

DevelopmentofAPOSTheory

APOSTheoryaroseoutofanattempttounderstandthemechanismofreflectiveabstraction,

introducedbyPiagettodescribethedevelopmentoflogicalthinkinginchildren,andextendthisidea

tomoreadvancedmathematicalconcepts(Dubinsky,1991a).Thisworkhasbeencarriedonbya

smallgroupofresearcherscalledaResearchinUndergraduateMathematicsEducationCommunity

(RUMEC)whohavebeencollaboratingonspecificresearchprojectsusingAPOSTheorywithina

4

broaderresearchandcurriculumdevelopmentframework.Theframeworkconsistsofessentiallythree

components:atheoreticalanalysisofacertainmathematicalconcept,thedevelopmentand

implementationofinstructionaltreatments(usingseveralnon-standardpedagogicalstrategiessuchas

cooperativelearningandconstructingmathematicalconceptsonacomputer)basedonthistheoretical

analysis,andthecollectionandanalysisofdatatotestandrefineboththeinitialtheoreticalanalysis

andtheinstruction.Thiscycleisrepeatedasoftenasnecessarytounderstandtheepistemologyofthe

conceptandtoobtaineffectivepedagogicalstrategiesforhelpingstudentslearnit.

ThetheoreticalanalysisisbasedinitiallyonthegeneralAPOStheoryandtheresearcher’s

understandingofthemathematicalconceptinquestion.Afteroneormorerepetitionsofthecycleand

revisions,itisalsobasedonthefine-grainedanalysesdescribedaboveofdataobtainedfromstudents

whoaretryingtolearnorwhohavelearnedtheconcept.Thetheoreticalanalysisproposes,intheform

ofageneticdecomposition,asetofmentalconstructionsthatastudentmightmakeinorderto

understandthemathematicalconceptbeingstudied.Thus,inthecaseoftheconceptofcosetsas

describedabove,theanalysisproposesthatthestudentshouldworkwithveryexplicitexamplesto

constructanactionconceptionofcoset;thenheorshecaninteriorizetheseactionstoformprocesses

inwhicha(left)cosetgHofanelementgofagroupGisimaginedasbeingformedbytheprocessof

iteratingthroughtheelementshofH,formingtheproductsgh,andcollectingtheminasetcalledgH;

andfinally,asaresultofapplyingactionsandprocessestoexamplesofcosets,thestudent

encapsulatestheprocessofcosetformationtothinkofcosetsasobjects.Foramoredetailed

descriptionoftheapplicationofthisapproachtocosetsandrelatedconcepts,seeAsiala,Dubinsky,et.

al.(1997).

Pedagogyisthendesignedtohelpthestudentsmakethesementalconstructionsandrelatethem

tothemathematicalconceptofcoset.Inourwork,wehaveusedcooperativelearningand

implementingmathematicalconceptsonthecomputerinaprogramminglanguagewhichsupports

manymathematicalconstructsinasyntaxverysimilartostandardmathematicalnotation.Thus

students,workingingroups,willexpresssimpleexamplesofcosetsonthecomputerasfollows.

Z20:={0..19};

op:=|(x,y)->x+y(mod20)|;

5

H:={0,4,8,12,16};

5H:={1,5,9,13,17};

Tointeriorizetheactionsrepresentedbythiscomputercode,thestudentswillconstructmore

complicatedexamplesofcosets,suchasthoseappearingingroupsofsymmetries.

Sn:={[a,b,c,d]:a,b,c,din{1,2,3,4}|#{a,b,c,d}=4};

op:=|(p,q)->[p(q(i)):iin[1..4]]|;

H:={[1,2,3,4],[2,1,3,4],[3,4,1,2],[4,3,2,1]};

p:=[4,3,2,1];

pH:={p.opq:qinH};

Thelaststep,toencapsulatethisprocessconceptionofcosetstothinkofthemasobjects,canbevery

difficultformanystudents.Computeractivitiestohelpthemmayincludeformingthesetofallcosets

ofasubgroup,countingthem,andpickingtwocosetstocomparetheircardinalitiesandfindtheir

intersections.Theseactionsaredonewithcodesuchasthefollowing.

SnModH:={{p.opq:qinH}:pinSn};

#SnModH;

L:=arb(SnModH);K:=arb(SnModH);#L=#K;LinterK;

Finally,thestudentswriteacomputerprogramthatconvertsthebinaryoperationopfromanoperation

onelementsofthegrouptosubsetsofthegroup.Thisstructureallowsthemtoconstructabinary

operation(cosetproduct)onthesetofallcosetsofasubgroupandbegintoinvestigatequotient

groups.

Itisimportanttonotethatinthispedagogicalapproach,almostalloftheprogramsarewritten

bythestudents.Onehypothesisthattheresearchinvestigatesisthat,whethercompletelysuccessfulor

not,thetaskofwritingappropriatecodeleadsstudentstomakethementalconstructionsofactions,

processes,objects,andschemasproposedbythetheory.Thecomputerworkisaccompaniedby

classroomdiscussionsthatgivethestudentsanopportunitytoreflectonwhattheyhavedoneinthe

computerlabandrelatethemtomathematicalconceptsandtheirpropertiesandrelationships.Once

theconceptsareinplaceintheirminds,thestudentsareassigned(inclass,homeworkand

examinations)manystandardexercisesandproblemsrelatedtocosets.

6

Afterthestudentshavebeenthroughsuchaninstructionaltreatment,quantitativeand

qualitativeinstrumentsaredesignedtodeterminethementalconceptstheymayhaveconstructedand

themathematicstheymayhavelearned.Thetheoreticalanalysispointstoquestionsresearchersmay

askintheprocessofdataanalysisandtheresultsofthisdataanalysisindicatesboththeextentto

whichtheinstructionhasbeeneffectiveandpossiblerevisionsinthegeneticdecomposition.

Thiswayofdoingresearchandcurriculumdevelopmentsimultaneouslyemphasizesboth

theoryandapplicationstoteachingpractice.

Refiningthetheory

Asnotedabove,thetheoryhelpsusanalyzedataandourattempttousethetheorytoexplain

thedatacanleadtochangesinthetheory.Thesechangescanbeoftwokinds.Usually,thegenetic

decompositionintheoriginaltheoreticalanalysisisrevisedandrefinedasaresultofthedata.Inrare

cases,itmaybenecessarytoenhancetheoveralltheory.Animportantexampleofsucharevisionis

theincorporationofthetriadconceptofPiagetandGarcia(1989)whichisleadingtoabetter

understandingoftheconstructionofschemas.Thisenhancementtothetheorywasintroducedin

Clark,et.al.(1997)wheretheyreportonstudents’understandingofthechainrule,andisbeingfurther

elaborateduponinthreecurrentstudies:sequencesofnumbers(Mathews,et.al.,inpreparation);the

chainruleanditsrelationtocompositionoffunctions(Cottrill,1999);andtherelationsbetweenthe

graphofafunctionandpropertiesofitsfirstandsecondderivatives(Baker,et.al.,submitted).Ineach

ofthesestudies,theunderstandingofschemasasdescribedabovewasnotadequatetoprovidea

satisfactoryexplanationofthedataandtheintroductionofthetriadhelpedtoelaborateadeeper

understandingofschemasandprovidebetterexplanationsofthedata.

Thetriadmechanismconsistsinthreestages,referredtoasIntra,Inter,andTrans,inthe

developmentoftheconnectionsanindividualcanmakebetweenparticularconstructswithinthe

schema,aswellasthecoherenceoftheseconnections.TheIntrastageofschemadevelopmentis

characterizedbyafocusonindividualactions,processes,andobjectsinisolationfromothercognitive

itemsofasimilarnature.Forexample,inthefunctionconcept,anindividualattheIntralevel,would

tendtofocusonasinglefunctionandthevariousactivitiesthatheorshecouldperformwithit.The

7

Interstageischaracterizedbytheconstructionofrelationshipsandtransformationsamongthese

cognitiveentities.Atthisstage,anindividualmaybegintogroupitemstogetherandevencallthemby

thesamename.Inthecaseoffunctions,theindividualmightthinkaboutaddingfunctions,composing

them,etc.andevenbegintothinkofalloftheseindividualoperationsasinstancesofthesamesortof

activity:transformationoffunctions.Finally,attheTransstagetheindividualconstructsanimplicit

orexplicitunderlyingstructurethroughwhichtherelationshipsdevelopedintheInterstageare

understoodandwhichgivestheschemaacoherencebywhichtheindividualcandecidewhatisinthe

scopeoftheschemaandwhatisnot.Forexample,anindividualattheTransstageforthefunction

conceptcouldconstructvarioussystemsoftransformationsoffunctionssuchasringsoffunctions,

infinitedimensionalvectorspacesoffunctions,togetherwiththeoperationsincludedinsuch

mathematicalstructures.

ApplyingtheAPOSTheory

IncludedwiththispaperisanannotatedbibliographyofresearchrelatedtoAPOSTheory,its

ongoingdevelopmentanditsuseinspecificresearchstudies.Thisresearchconcernsmathematical

conceptssuchas:functions;varioustopicsinabstractalgebraincludingbinaryoperations,groups,

subgroups,cosets,normalityandquotientgroups;topicsindiscretemathematicssuchasmathematical

induction,permutations,symmetries,existentialanduniversalquantifiers;topicsincalculusincluding

limits,thechainrule,graphicalunderstandingofthederivativeandinfinitesequencesofnumbers;

topicsinstatisticssuchasmean,standarddeviationandthecentrallimittheorem;elementarynumber

theorytopicssuchasplacevalueinbasennumbers,divisibility,multiplesandconversionofnumbers

fromonebasetoanother;andfractions.Inmostofthiswork,thecontextforthestudiesarecollegiate

levelmathematicstopicsandundergraduatestudents.Inthecaseofthenumbertheorystudies,the

researchersexaminetheunderstandingofpre-collegemathematicsconceptsbycollegestudents

preparingtobeteachers.Finally,somestudiessuchasthatoffractions,showthattheAPOSTheory,

developedfor“advanced”mathematicalthinking,isalsoausefultoolinstudyingstudents’

understandingofmorebasicmathematicalconcepts.

8

Thetotalityofthisbodyofwork,muchofitdonebyRUMECmembersinvolvedindeveloping

thetheory,butanincreasingamountdonebyindividualresearchershavingnoconnectionwith

RUMECortheconstructionofthetheory,suggeststhatAPOSTheoryisatoolthatcanbeused

objectivelytoexplainstudentdifficultieswithabroadrangeofmathematicalconceptsandtosuggest

waysthatstudentscanlearntheseconcepts.APOSTheorycanpointustowardspedagogicalstrategies

thatleadtomarkedimprovementinstudentlearningofcomplexorabstractmathematicalconceptsand

students’useoftheseconceptstoprovetheorems,provideexamples,andsolveproblems.Data

supportingthisassertioncanbefoundinthepaperslistedinthebibliography.

UsingtheAPOSTheorytodevelopacommunityofresearchers

Atthisstageinthedevelopmentofresearchinundergraduatemathematicseducation,thereis

neitherasufficientlylargenumberofresearchersnorenoughgraduateschoolprogramstotrainnew

researchers.Otherapproaches,suchasexperiencedandnoviceresearchersworkingtogetherinteams

onspecificresearchproblems,needtobeemployedatleastonatemporarybasis.RUMECisone

exampleofaresearchcommunitythathasutilizedthisapproachintrainingnewresearchers.

Inaddition,aspecifictheorycanbeusedtounifyandfocustheworkofsuchgroups.The

initialgroupofresearchersinRUMEC,about30total,madeadecisiontofocustheirresearchwork

aroundtheAPOSTheory.Thiswasnotforthepurposeofestablishingdogmaorcreatingaclosed

researchcommunity,butratheritwasadecisionbasedoncurrentinterestsandneedsofthegroupof

researchers.

RUMECwasformedbyacombinationofestablishedandbeginningresearchersin

mathematicseducation.ThusoneimportantroleofRUMECwasthementoringofthesenew

researchers.HavingasingletheoreticalperspectiveinwhichtheworkofRUMECwasinitially

groundedwasbeneficialforthosejustbeginninginthisarea.AtthemeetingsofRUMEC,discussions

couldfocusnotonlyonthedetailsoftheindividualprojectsastheydeveloped,butalsoonthegeneral

theoryunderlyingallofthework.Inaddition,thegroup’sgeneralinterestinthistheoryandfrequent

discussionsaboutitinthecontextofactiveresearchprojectshasledtogrowthinthetheoryitself.

Thiswasthecase,forexample,inthedevelopmentofthetriadasatoolforunderstandingschemas.

9

Astheworkofthisgroupmatures,individualsarebeginningtouseothertheoreticalperspectivesand

othermodesofdoingresearch.

Summary

Inthispaper,wehavementionedsixwaysinwhichatheorycancontributetoresearchandwe

suggestthatthislistcanbeusedascriteriaforevaluatingatheory.Wehavedescribedhowonesuch

perspective,APOSTheoryisbeingused,inanorganizedway,bymembersofRUMECandothersto

conductresearchanddevelopcurriculum.Wehaveshownhowobservingstudents’successinmaking

ornotmakingmentalconstructionsproposedbythetheoryandusingsuchobservationstoanalyzedata

canorganizeourthinkingaboutlearningmathematicalconcepts,provideexplanationsofstudent

difficultiesandpredictsuccessorfailureinunderstandingamathematicalconcept.Thereisawide

rangeofmathematicalconceptstowhichAPOSTheorycanandhasbeenappliedandthistheoryis

usedasalanguageforcommunicationofideasaboutlearning.Wehavealsoseenhowthetheoryis

groundedindata,andhasbeenusedasavehicleforbuildingacommunityofresearchers.Yetitsuse

isnotrestrictedtomembersofthatcommunity.Finally,weprovideanannotatedbibliographywhich

presentsfurtherdetailsaboutthistheoryanditsuseinresearchinundergraduatemathematics

education.

10

AnAnnotatedBibliographyofworks

whichdeveloporutilizeAPOSTheory

I.Arnon.Teachingfractionsinelementaryschoolusingthesoftware“FractionsasEquivalence

Classes”oftheCentreforEducationalTechnology,TheNinthAnnualConferenceforComputersin

Education,TheIsraeliOrganizationforComputersinEducation,BookofAbstracts,Tel-Aviv,Israel,

p.48,1992.(InHebrew).

I.Arnon,R.NirenburgandM.Sukenik.Teachingdecimalnumbersusingconcreteobjects,The

SecondConferenceoftheAssociationfortheAdvancementoftheMathematicalEducationinIsrael,

BookofAbstracts,Jerusalem,Israel,p.19,1995.(InHebrew).

I.Arnon.Refiningtheuseofconcreteobjectsforteachingmathematicstochildrenattheageof

concreteoperations,TheThirdConferenceoftheAssociationfortheAdvancementoftheMathematical

EducationinIsrael,BookofAbstracts,Jerusalem,Israel,p.69,1996.(InHebrew).

I.Arnon.Inthemind’seye:Howchildrendevelopmathematicalconcepts–extendingPiaget's

theory.Doctoraldissertation,SchoolofEducation,HaifaUniversity,1998a.

I.Arnon.Similarstagesinthedevelopmentsoftheconceptofrationalnumberandtheconceptof

decimalnumber,andpossiblerelationsbetweentheirdevelopments,TheFifthConferenceofthe

AssociationfortheAdvancementoftheMathematicalEducationinIsrael,BookofAbstracts.Be’er-

Tuvia,Israel,p.42,1998b.(InHebrew).

ThestudiesbyArnonandhercolleagueslistedabovedealwiththedevelopmentof

mathematicalconceptsbyelementaryschoolchildren.Havingcreatedaframeworkthat

combinesAPOStheory,Nesher’stheoryonLearningSystems,andYerushalmy’sideasof

multi-representation,sheinvestigatestheintroductionofmathematicalconceptsasconcrete

actionsversustheirintroductionasconcreteobjects.Sheestablishesdevelopmentalpathsfor

certainfraction-concepts.Shefindsthatstudentstowhomthefractionswereintroducedas

concreteactionsprogressedbetteralongthesepathsthanstudentstowhomthefractionswere

introducedasconcreteobjects.Inaddition,thefindingsestablishthefollowingstageinthe

developmentofconcreteactionsintoabstractobjects:afterabandoningtheconcretematerials,

andbeforeachievingabstractlevels,childrenperformtheconcreteactionsintheirimagination.

ThiscorrespondstotheinteriorizationofAPOStheory.

M.Artigue,Enseñanzayaprendizajedelanálisiselemental:¿quésepuedeaprenderdelas

investigacionesdidácticasyloscambioscurriculares?RevistaLatinoamericanadeInvestigaciónen

MatiemáticaEducativa,1,1,40-55,1998.

Inthefirstpartofthispaper,theauthordiscussesanumberofstudentdifficultiesandtriesto

explainthemusingvarioustheoriesoflearningincludingAPOSTheory.Students’

unwillingnesstoacceptthat0.999…isequalto1isexplained,forexample,byinterpretingthe

formerasaprocess,thelatterasanobjectsothatthetwocannotbeseenasequaluntilthe

studentisabletoencapsulatetheprocesswhichisageneraldifficulty.Inthesecondpartofthe

paper,theauthordiscussesthemeasuresthathavebeentakeninFranceduringthe20th

Centurytoovercomethesedifficulties.

11

M.Asiala,A.Brown,D.DeVries,E.Dubinsky,D.MathewsandK.Thomas.Aframeworkfor

researchandcurriculumdevelopmentinundergraduatemathematicseducation,ResearchinCollegiate

MathematicsEducationII,CBMSIssuesinMathematicsEducation,6,1-32,1996.

Theauthorsdetailaresearchframeworkwiththreecomponentsandgiveexamplesofits

application.Theframeworkutilizesqualitativemethodsforresearchandisbasedonavery

specifictheoreticalperspectivethatwasdevelopedthroughattemptstounderstandtheideasof

Piagetconcerningreflectiveabstractionandreconstructtheminthecontextofcollegelevel

mathematics.Forthefirstcomponent,thetheoreticalanalysis,theauthorspresenttheAPOS

theory.Forthesecondcomponent,theauthorsdescribespecificinstructionaltreatments,

includingtheACEteachingcycle(activities,classdiscussion,andexercises),cooperative

learning,andtheuseoftheprogramminglanguageISETL.Thefinalcomponentconsistsof

datacollection

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论