版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
APOS:AConstructivistTheoryofLearning
inUndergraduateMathematicsEducationResearch
EdDubinsky,GeorgiaStateUniversity,USA
and
MichaelA.McDonald,OccidentalCollege,USA
Theworkreportedinthispaperisbasedontheprinciplethatresearchinmathematicseducation
isstrengthenedinseveralwayswhenbasedonatheoreticalperspective.Developmentofatheoryor
modelinmathematicseducationshouldbe,inourview,partofanattempttounderstandhow
mathematicscanbelearnedandwhataneducationalprogramcandotohelpinthislearning.Wedo
notthinkthatatheoryoflearningisastatementoftruthandalthoughitmayormaynotbean
approximationtowhatisreallyhappeningwhenanindividualtriestolearnoneoranotherconceptin
mathematics,thisisnotourfocus.Ratherweconcentrateonhowatheoryoflearningmathematics
canhelpusunderstandthelearningprocessbyprovidingexplanationsofphenomenathatwecan
observeinstudentswhoaretryingtoconstructtheirunderstandingsofmathematicalconceptsandby
suggestingdirectionsforpedagogythatcanhelpinthislearningprocess.
Modelsandtheoriesinmathematicseducationcan
•supportprediction,
•haveexplanatorypower,
•beapplicabletoabroadrangeofphenomena,
•helporganizeone’sthinkingaboutcomplex,interrelatedphenomena,
•serveasatoolforanalyzingdata,and
•providealanguageforcommunicationofideasaboutlearningthatgobeyondsuperficial
descriptions.
Wewouldliketoofferthesesixfeatures,thefirstthreeofwhicharegivenbyAlanSchoenfeldin
“Towardatheoryofteaching-in-context,”IssuesinEducation,bothaswaysinwhichatheorycan
contributetoresearchandascriteriaforevaluatingatheory.
1
Inthispaper,wedescribeonesuchperspective,APOSTheory,inthecontextofundergraduate
mathematicseducation.Weexplaintheextenttowhichithastheabovecharacteristics,discussthe
rolethatthistheoryplaysinaresearchandcurriculumdevelopmentprogramandhowsuchaprogram
cancontributetothedevelopmentofthetheory,describebrieflyhowworkingwiththisparticular
theoryhasprovidedavehicleforbuildingacommunityofresearchersinundergraduatemathematics
education,andindicatetheuseofAPOSTheoryinspecificresearchstudies,bothbyresearcherswho
aredevelopingitaswellasothersnotconnectedwithitsdevelopment.Weprovide,inconnection
withthispaper,anannotatedbibliographyofresearchreportswhichinvolvethistheory.
APOSTheory
Thetheorywepresentbeginswiththehypothesisthatmathematicalknowledgeconsistsinan
individual’stendencytodealwithperceivedmathematicalproblemsituationsbyconstructingmental
actions,processes,andobjectsandorganizingtheminschemastomakesenseofthesituationsand
solvetheproblems.InreferencetothesementalconstructionswecallitAPOSTheory.Theideas
arisefromourattemptstoextendtothelevelofcollegiatemathematicslearningtheworkofJ.Piaget
onreflectiveabstractioninchildren’slearning.APOSTheoryisdiscussedindetailinAsiala,et.al.
(1996).Wewillarguethatthistheoreticalperspectivepossesses,atleasttosomeextent,the
characteristicslistedaboveand,moreover,hasbeenveryusefulinattemptingtounderstandstudents’
learningofabroadrangeoftopicsincalculus,abstractalgebra,statistics,discretemathematics,and
otherareasofundergraduatemathematics.Hereisabriefsummaryoftheessentialcomponentsofthe
theory.
Anactionisatransformationofobjectsperceivedbytheindividualasessentiallyexternaland
asrequiring,eitherexplicitlyorfrommemory,step-by-stepinstructionsonhowtoperformthe
operation.Forexample,anindividualwithanactionconceptionofleftcosetwouldberestrictedto
workingwithaconcretegroupsuchasZ20andheorshecouldconstructsubgroups,suchas
H={0,4,8,12,16}byformingthemultiplesof4.Thentheindividualcouldwritetheleftcosetof5as
theset5+H={1,5,9,13,17}consistingoftheelementsofZ20whichhaveremaindersof1whendivided
by4.
2
Whenanactionisrepeatedandtheindividualreflectsuponit,heorshecanmakeaninternal
mentalconstructioncalledaprocesswhichtheindividualcanthinkofasperformingthesamekindof
action,butnolongerwiththeneedofexternalstimuli.Anindividualcanthinkofperforminga
processwithoutactuallydoingit,andthereforecanthinkaboutreversingitandcomposingitwith
otherprocesses.Anindividualcannotusetheactionconceptionofleftcosetdescribedabovevery
effectivelyforgroupssuchasS4,thegroupofpermutationsoffourobjectsandthesubgroupH
correspondingtothe8rigidmotionsofasquare,andnotatallforgroupsSnforlargevaluesofn.In
suchcases,theindividualmustthinkoftheleftcosetofapermutationpasthesetofallproductsph,
wherehisanelementofH.Thinkingaboutformingthissetisaprocessconceptionofcoset.
Anobjectisconstructedfromaprocesswhentheindividualbecomesawareoftheprocessasa
totalityandrealizesthattransformationscanactonit.Forexample,anindividualunderstandscosets
asobjectswhenheorshecanthinkaboutthenumberofcosetsofaparticularsubgroup,canimagine
comparingtwocosetsforequalityorfortheircardinalities,orcanapplyabinaryoperationtothesetof
allcosetsofasubgroup.
Finally,aschemaforacertainmathematicalconceptisanindividual’scollectionofactions,
processes,objects,andotherschemaswhicharelinkedbysomegeneralprinciplestoforma
frameworkintheindividual’smindthatmaybebroughttobearuponaproblemsituationinvolving
thatconcept.Thisframeworkmustbecoherentinthesensethatitgives,explicitlyorimplicitly,
meansofdeterminingwhichphenomenaareinthescopeoftheschemaandwhicharenot.Because
thistheoryconsidersthatallmathematicalentitiescanberepresentedintermsofactions,processes,
objects,andschemas,theideaofschemaisverysimilartotheconceptimagewhichTallandVinner
introducein“Conceptimageandconceptdefinitioninmathematicswithparticularreferencetolimits
andcontinuity,”EducationalStudiesinMathematics,12,151-169(1981).Ourrequirementof
coherence,however,distinguishesthetwonotions.
Thefourcomponents,action,process,object,andschemahavebeenpresentedhereina
hierarchical,orderedlist.Thisisausefulwayoftalkingabouttheseconstructionsand,insomesense,
eachconceptioninthelistmustbeconstructedbeforethenextstepispossible.Inreality,however,
whenanindividualisdevelopingherorhisunderstandingofaconcept,theconstructionsarenot
3
actuallymadeinsuchalinearmanner.Withanactionconceptionoffunction,forexample,an
individualmaybelimitedtothinkingaboutformulasinvolvingletterswhichcanbemanipulatedor
replacedbynumbersandwithwhichcalculationscanbedone.Wethinkofthisnotionasprecedinga
processconception,inwhichafunctionisthoughtofasaninput-outputmachine.Whatactually
happens,however,isthatanindividualwillbeginbybeingrestrictedtocertainspecifickindsof
formulas,reflectoncalculationsandstartthinkingaboutaprocess,gobacktoanactioninterpretation,
perhapswithmoresophisticatedformulas,furtherdevelopaprocessconceptionandsoon.Inother
words,theconstructionofthesevariousconceptionsofaparticularmathematicalideaismoreofa
dialecticthanalinearsequence.
APOSTheorycanbeuseddirectlyintheanalysisofdatabyaresearcher.Inveryfinegrained
analyses,theresearchercancomparethesuccessorfailureofstudentsonamathematicaltaskwiththe
specificmentalconstructionstheymayormaynothavemade.Ifthereappeartwostudentswhoagree
intheirperformanceuptoaveryspecificmathematicalpointandthenonestudentcantakeafurther
stepwhiletheothercannot,theresearchertriestoexplainthedifferencebypointingtomental
constructionsofactions,processes,objectsand/orschemasthattheformerstudentappearstohave
madebuttheotherhasnot.Thetheorythenmakestestablepredictionsthatifaparticularcollectionof
actions,processes,objectsandschemasareconstructedinacertainmannerbyastudent,thenthis
individualwilllikelybesuccessfulusingcertainmathematicalconceptsandincertainproblem
situations.Detaileddescriptions,referredtoasgeneticdecompositions,ofschemasintermsofthese
mentalconstructionsareawayoforganizinghypothesesabouthowlearningmathematicalconcepts
cantakeplace.Thesedescriptionsalsoprovidealanguagefortalkingaboutsuchhypotheses.
DevelopmentofAPOSTheory
APOSTheoryaroseoutofanattempttounderstandthemechanismofreflectiveabstraction,
introducedbyPiagettodescribethedevelopmentoflogicalthinkinginchildren,andextendthisidea
tomoreadvancedmathematicalconcepts(Dubinsky,1991a).Thisworkhasbeencarriedonbya
smallgroupofresearcherscalledaResearchinUndergraduateMathematicsEducationCommunity
(RUMEC)whohavebeencollaboratingonspecificresearchprojectsusingAPOSTheorywithina
4
broaderresearchandcurriculumdevelopmentframework.Theframeworkconsistsofessentiallythree
components:atheoreticalanalysisofacertainmathematicalconcept,thedevelopmentand
implementationofinstructionaltreatments(usingseveralnon-standardpedagogicalstrategiessuchas
cooperativelearningandconstructingmathematicalconceptsonacomputer)basedonthistheoretical
analysis,andthecollectionandanalysisofdatatotestandrefineboththeinitialtheoreticalanalysis
andtheinstruction.Thiscycleisrepeatedasoftenasnecessarytounderstandtheepistemologyofthe
conceptandtoobtaineffectivepedagogicalstrategiesforhelpingstudentslearnit.
ThetheoreticalanalysisisbasedinitiallyonthegeneralAPOStheoryandtheresearcher’s
understandingofthemathematicalconceptinquestion.Afteroneormorerepetitionsofthecycleand
revisions,itisalsobasedonthefine-grainedanalysesdescribedaboveofdataobtainedfromstudents
whoaretryingtolearnorwhohavelearnedtheconcept.Thetheoreticalanalysisproposes,intheform
ofageneticdecomposition,asetofmentalconstructionsthatastudentmightmakeinorderto
understandthemathematicalconceptbeingstudied.Thus,inthecaseoftheconceptofcosetsas
describedabove,theanalysisproposesthatthestudentshouldworkwithveryexplicitexamplesto
constructanactionconceptionofcoset;thenheorshecaninteriorizetheseactionstoformprocesses
inwhicha(left)cosetgHofanelementgofagroupGisimaginedasbeingformedbytheprocessof
iteratingthroughtheelementshofH,formingtheproductsgh,andcollectingtheminasetcalledgH;
andfinally,asaresultofapplyingactionsandprocessestoexamplesofcosets,thestudent
encapsulatestheprocessofcosetformationtothinkofcosetsasobjects.Foramoredetailed
descriptionoftheapplicationofthisapproachtocosetsandrelatedconcepts,seeAsiala,Dubinsky,et.
al.(1997).
Pedagogyisthendesignedtohelpthestudentsmakethesementalconstructionsandrelatethem
tothemathematicalconceptofcoset.Inourwork,wehaveusedcooperativelearningand
implementingmathematicalconceptsonthecomputerinaprogramminglanguagewhichsupports
manymathematicalconstructsinasyntaxverysimilartostandardmathematicalnotation.Thus
students,workingingroups,willexpresssimpleexamplesofcosetsonthecomputerasfollows.
Z20:={0..19};
op:=|(x,y)->x+y(mod20)|;
5
H:={0,4,8,12,16};
5H:={1,5,9,13,17};
Tointeriorizetheactionsrepresentedbythiscomputercode,thestudentswillconstructmore
complicatedexamplesofcosets,suchasthoseappearingingroupsofsymmetries.
Sn:={[a,b,c,d]:a,b,c,din{1,2,3,4}|#{a,b,c,d}=4};
op:=|(p,q)->[p(q(i)):iin[1..4]]|;
H:={[1,2,3,4],[2,1,3,4],[3,4,1,2],[4,3,2,1]};
p:=[4,3,2,1];
pH:={p.opq:qinH};
Thelaststep,toencapsulatethisprocessconceptionofcosetstothinkofthemasobjects,canbevery
difficultformanystudents.Computeractivitiestohelpthemmayincludeformingthesetofallcosets
ofasubgroup,countingthem,andpickingtwocosetstocomparetheircardinalitiesandfindtheir
intersections.Theseactionsaredonewithcodesuchasthefollowing.
SnModH:={{p.opq:qinH}:pinSn};
#SnModH;
L:=arb(SnModH);K:=arb(SnModH);#L=#K;LinterK;
Finally,thestudentswriteacomputerprogramthatconvertsthebinaryoperationopfromanoperation
onelementsofthegrouptosubsetsofthegroup.Thisstructureallowsthemtoconstructabinary
operation(cosetproduct)onthesetofallcosetsofasubgroupandbegintoinvestigatequotient
groups.
Itisimportanttonotethatinthispedagogicalapproach,almostalloftheprogramsarewritten
bythestudents.Onehypothesisthattheresearchinvestigatesisthat,whethercompletelysuccessfulor
not,thetaskofwritingappropriatecodeleadsstudentstomakethementalconstructionsofactions,
processes,objects,andschemasproposedbythetheory.Thecomputerworkisaccompaniedby
classroomdiscussionsthatgivethestudentsanopportunitytoreflectonwhattheyhavedoneinthe
computerlabandrelatethemtomathematicalconceptsandtheirpropertiesandrelationships.Once
theconceptsareinplaceintheirminds,thestudentsareassigned(inclass,homeworkand
examinations)manystandardexercisesandproblemsrelatedtocosets.
6
Afterthestudentshavebeenthroughsuchaninstructionaltreatment,quantitativeand
qualitativeinstrumentsaredesignedtodeterminethementalconceptstheymayhaveconstructedand
themathematicstheymayhavelearned.Thetheoreticalanalysispointstoquestionsresearchersmay
askintheprocessofdataanalysisandtheresultsofthisdataanalysisindicatesboththeextentto
whichtheinstructionhasbeeneffectiveandpossiblerevisionsinthegeneticdecomposition.
Thiswayofdoingresearchandcurriculumdevelopmentsimultaneouslyemphasizesboth
theoryandapplicationstoteachingpractice.
Refiningthetheory
Asnotedabove,thetheoryhelpsusanalyzedataandourattempttousethetheorytoexplain
thedatacanleadtochangesinthetheory.Thesechangescanbeoftwokinds.Usually,thegenetic
decompositionintheoriginaltheoreticalanalysisisrevisedandrefinedasaresultofthedata.Inrare
cases,itmaybenecessarytoenhancetheoveralltheory.Animportantexampleofsucharevisionis
theincorporationofthetriadconceptofPiagetandGarcia(1989)whichisleadingtoabetter
understandingoftheconstructionofschemas.Thisenhancementtothetheorywasintroducedin
Clark,et.al.(1997)wheretheyreportonstudents’understandingofthechainrule,andisbeingfurther
elaborateduponinthreecurrentstudies:sequencesofnumbers(Mathews,et.al.,inpreparation);the
chainruleanditsrelationtocompositionoffunctions(Cottrill,1999);andtherelationsbetweenthe
graphofafunctionandpropertiesofitsfirstandsecondderivatives(Baker,et.al.,submitted).Ineach
ofthesestudies,theunderstandingofschemasasdescribedabovewasnotadequatetoprovidea
satisfactoryexplanationofthedataandtheintroductionofthetriadhelpedtoelaborateadeeper
understandingofschemasandprovidebetterexplanationsofthedata.
Thetriadmechanismconsistsinthreestages,referredtoasIntra,Inter,andTrans,inthe
developmentoftheconnectionsanindividualcanmakebetweenparticularconstructswithinthe
schema,aswellasthecoherenceoftheseconnections.TheIntrastageofschemadevelopmentis
characterizedbyafocusonindividualactions,processes,andobjectsinisolationfromothercognitive
itemsofasimilarnature.Forexample,inthefunctionconcept,anindividualattheIntralevel,would
tendtofocusonasinglefunctionandthevariousactivitiesthatheorshecouldperformwithit.The
7
Interstageischaracterizedbytheconstructionofrelationshipsandtransformationsamongthese
cognitiveentities.Atthisstage,anindividualmaybegintogroupitemstogetherandevencallthemby
thesamename.Inthecaseoffunctions,theindividualmightthinkaboutaddingfunctions,composing
them,etc.andevenbegintothinkofalloftheseindividualoperationsasinstancesofthesamesortof
activity:transformationoffunctions.Finally,attheTransstagetheindividualconstructsanimplicit
orexplicitunderlyingstructurethroughwhichtherelationshipsdevelopedintheInterstageare
understoodandwhichgivestheschemaacoherencebywhichtheindividualcandecidewhatisinthe
scopeoftheschemaandwhatisnot.Forexample,anindividualattheTransstageforthefunction
conceptcouldconstructvarioussystemsoftransformationsoffunctionssuchasringsoffunctions,
infinitedimensionalvectorspacesoffunctions,togetherwiththeoperationsincludedinsuch
mathematicalstructures.
ApplyingtheAPOSTheory
IncludedwiththispaperisanannotatedbibliographyofresearchrelatedtoAPOSTheory,its
ongoingdevelopmentanditsuseinspecificresearchstudies.Thisresearchconcernsmathematical
conceptssuchas:functions;varioustopicsinabstractalgebraincludingbinaryoperations,groups,
subgroups,cosets,normalityandquotientgroups;topicsindiscretemathematicssuchasmathematical
induction,permutations,symmetries,existentialanduniversalquantifiers;topicsincalculusincluding
limits,thechainrule,graphicalunderstandingofthederivativeandinfinitesequencesofnumbers;
topicsinstatisticssuchasmean,standarddeviationandthecentrallimittheorem;elementarynumber
theorytopicssuchasplacevalueinbasennumbers,divisibility,multiplesandconversionofnumbers
fromonebasetoanother;andfractions.Inmostofthiswork,thecontextforthestudiesarecollegiate
levelmathematicstopicsandundergraduatestudents.Inthecaseofthenumbertheorystudies,the
researchersexaminetheunderstandingofpre-collegemathematicsconceptsbycollegestudents
preparingtobeteachers.Finally,somestudiessuchasthatoffractions,showthattheAPOSTheory,
developedfor“advanced”mathematicalthinking,isalsoausefultoolinstudyingstudents’
understandingofmorebasicmathematicalconcepts.
8
Thetotalityofthisbodyofwork,muchofitdonebyRUMECmembersinvolvedindeveloping
thetheory,butanincreasingamountdonebyindividualresearchershavingnoconnectionwith
RUMECortheconstructionofthetheory,suggeststhatAPOSTheoryisatoolthatcanbeused
objectivelytoexplainstudentdifficultieswithabroadrangeofmathematicalconceptsandtosuggest
waysthatstudentscanlearntheseconcepts.APOSTheorycanpointustowardspedagogicalstrategies
thatleadtomarkedimprovementinstudentlearningofcomplexorabstractmathematicalconceptsand
students’useoftheseconceptstoprovetheorems,provideexamples,andsolveproblems.Data
supportingthisassertioncanbefoundinthepaperslistedinthebibliography.
UsingtheAPOSTheorytodevelopacommunityofresearchers
Atthisstageinthedevelopmentofresearchinundergraduatemathematicseducation,thereis
neitherasufficientlylargenumberofresearchersnorenoughgraduateschoolprogramstotrainnew
researchers.Otherapproaches,suchasexperiencedandnoviceresearchersworkingtogetherinteams
onspecificresearchproblems,needtobeemployedatleastonatemporarybasis.RUMECisone
exampleofaresearchcommunitythathasutilizedthisapproachintrainingnewresearchers.
Inaddition,aspecifictheorycanbeusedtounifyandfocustheworkofsuchgroups.The
initialgroupofresearchersinRUMEC,about30total,madeadecisiontofocustheirresearchwork
aroundtheAPOSTheory.Thiswasnotforthepurposeofestablishingdogmaorcreatingaclosed
researchcommunity,butratheritwasadecisionbasedoncurrentinterestsandneedsofthegroupof
researchers.
RUMECwasformedbyacombinationofestablishedandbeginningresearchersin
mathematicseducation.ThusoneimportantroleofRUMECwasthementoringofthesenew
researchers.HavingasingletheoreticalperspectiveinwhichtheworkofRUMECwasinitially
groundedwasbeneficialforthosejustbeginninginthisarea.AtthemeetingsofRUMEC,discussions
couldfocusnotonlyonthedetailsoftheindividualprojectsastheydeveloped,butalsoonthegeneral
theoryunderlyingallofthework.Inaddition,thegroup’sgeneralinterestinthistheoryandfrequent
discussionsaboutitinthecontextofactiveresearchprojectshasledtogrowthinthetheoryitself.
Thiswasthecase,forexample,inthedevelopmentofthetriadasatoolforunderstandingschemas.
9
Astheworkofthisgroupmatures,individualsarebeginningtouseothertheoreticalperspectivesand
othermodesofdoingresearch.
Summary
Inthispaper,wehavementionedsixwaysinwhichatheorycancontributetoresearchandwe
suggestthatthislistcanbeusedascriteriaforevaluatingatheory.Wehavedescribedhowonesuch
perspective,APOSTheoryisbeingused,inanorganizedway,bymembersofRUMECandothersto
conductresearchanddevelopcurriculum.Wehaveshownhowobservingstudents’successinmaking
ornotmakingmentalconstructionsproposedbythetheoryandusingsuchobservationstoanalyzedata
canorganizeourthinkingaboutlearningmathematicalconcepts,provideexplanationsofstudent
difficultiesandpredictsuccessorfailureinunderstandingamathematicalconcept.Thereisawide
rangeofmathematicalconceptstowhichAPOSTheorycanandhasbeenappliedandthistheoryis
usedasalanguageforcommunicationofideasaboutlearning.Wehavealsoseenhowthetheoryis
groundedindata,andhasbeenusedasavehicleforbuildingacommunityofresearchers.Yetitsuse
isnotrestrictedtomembersofthatcommunity.Finally,weprovideanannotatedbibliographywhich
presentsfurtherdetailsaboutthistheoryanditsuseinresearchinundergraduatemathematics
education.
10
AnAnnotatedBibliographyofworks
whichdeveloporutilizeAPOSTheory
I.Arnon.Teachingfractionsinelementaryschoolusingthesoftware“FractionsasEquivalence
Classes”oftheCentreforEducationalTechnology,TheNinthAnnualConferenceforComputersin
Education,TheIsraeliOrganizationforComputersinEducation,BookofAbstracts,Tel-Aviv,Israel,
p.48,1992.(InHebrew).
I.Arnon,R.NirenburgandM.Sukenik.Teachingdecimalnumbersusingconcreteobjects,The
SecondConferenceoftheAssociationfortheAdvancementoftheMathematicalEducationinIsrael,
BookofAbstracts,Jerusalem,Israel,p.19,1995.(InHebrew).
I.Arnon.Refiningtheuseofconcreteobjectsforteachingmathematicstochildrenattheageof
concreteoperations,TheThirdConferenceoftheAssociationfortheAdvancementoftheMathematical
EducationinIsrael,BookofAbstracts,Jerusalem,Israel,p.69,1996.(InHebrew).
I.Arnon.Inthemind’seye:Howchildrendevelopmathematicalconcepts–extendingPiaget's
theory.Doctoraldissertation,SchoolofEducation,HaifaUniversity,1998a.
I.Arnon.Similarstagesinthedevelopmentsoftheconceptofrationalnumberandtheconceptof
decimalnumber,andpossiblerelationsbetweentheirdevelopments,TheFifthConferenceofthe
AssociationfortheAdvancementoftheMathematicalEducationinIsrael,BookofAbstracts.Be’er-
Tuvia,Israel,p.42,1998b.(InHebrew).
ThestudiesbyArnonandhercolleagueslistedabovedealwiththedevelopmentof
mathematicalconceptsbyelementaryschoolchildren.Havingcreatedaframeworkthat
combinesAPOStheory,Nesher’stheoryonLearningSystems,andYerushalmy’sideasof
multi-representation,sheinvestigatestheintroductionofmathematicalconceptsasconcrete
actionsversustheirintroductionasconcreteobjects.Sheestablishesdevelopmentalpathsfor
certainfraction-concepts.Shefindsthatstudentstowhomthefractionswereintroducedas
concreteactionsprogressedbetteralongthesepathsthanstudentstowhomthefractionswere
introducedasconcreteobjects.Inaddition,thefindingsestablishthefollowingstageinthe
developmentofconcreteactionsintoabstractobjects:afterabandoningtheconcretematerials,
andbeforeachievingabstractlevels,childrenperformtheconcreteactionsintheirimagination.
ThiscorrespondstotheinteriorizationofAPOStheory.
M.Artigue,Enseñanzayaprendizajedelanálisiselemental:¿quésepuedeaprenderdelas
investigacionesdidácticasyloscambioscurriculares?RevistaLatinoamericanadeInvestigaciónen
MatiemáticaEducativa,1,1,40-55,1998.
Inthefirstpartofthispaper,theauthordiscussesanumberofstudentdifficultiesandtriesto
explainthemusingvarioustheoriesoflearningincludingAPOSTheory.Students’
unwillingnesstoacceptthat0.999…isequalto1isexplained,forexample,byinterpretingthe
formerasaprocess,thelatterasanobjectsothatthetwocannotbeseenasequaluntilthe
studentisabletoencapsulatetheprocesswhichisageneraldifficulty.Inthesecondpartofthe
paper,theauthordiscussesthemeasuresthathavebeentakeninFranceduringthe20th
Centurytoovercomethesedifficulties.
11
M.Asiala,A.Brown,D.DeVries,E.Dubinsky,D.MathewsandK.Thomas.Aframeworkfor
researchandcurriculumdevelopmentinundergraduatemathematicseducation,ResearchinCollegiate
MathematicsEducationII,CBMSIssuesinMathematicsEducation,6,1-32,1996.
Theauthorsdetailaresearchframeworkwiththreecomponentsandgiveexamplesofits
application.Theframeworkutilizesqualitativemethodsforresearchandisbasedonavery
specifictheoreticalperspectivethatwasdevelopedthroughattemptstounderstandtheideasof
Piagetconcerningreflectiveabstractionandreconstructtheminthecontextofcollegelevel
mathematics.Forthefirstcomponent,thetheoreticalanalysis,theauthorspresenttheAPOS
theory.Forthesecondcomponent,theauthorsdescribespecificinstructionaltreatments,
includingtheACEteachingcycle(activities,classdiscussion,andexercises),cooperative
learning,andtheuseoftheprogramminglanguageISETL.Thefinalcomponentconsistsof
datacollection
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 田忌赛马课件教学
- 2024一重集团融创科技发展限公司社会公开招聘8人易考易错模拟试题(共500题)试卷后附参考答案
- 传染病防控基本原理课件
- 2024年度光纤通信网络施工及维护合同3篇
- 考核19(西餐)试题
- 2024年度授权合同:某知名品牌授权生产许可
- 2024年度环保技术与研发合同
- 大学万圣节活动策划书14
- 开展同学聚会的策划方案
- 2024年度光伏项目中介担保合同
- 中华人民共和国建筑法
- 2024江西吉安县政务服务大厅人员招聘11人笔试备考题库及答案解析
- 礼仪培训第一
- 2025届湖南省郴州市高三年级上册第一次模拟考试英语试卷(含详解)
- 四年级数学(四则混合运算带括号)计算题专项练习与答案
- 人教版一年级上册数学第5单元《6-10的认识和加减法》试卷及答案
- 团员发展纪实簿
- 2024年中学生编程(图形化)竞赛试题
- DB11T 1213-2015 自来水单位产量能源消耗限额
- 2024-2025学年统编版七年级语文上册 第四单元 单元测试卷
- 无人机应用与基础操控入门课件
评论
0/150
提交评论