![电磁场与电磁波第2章1_第1页](http://file4.renrendoc.com/view/f47d546eabc9beaf618b0c570f1083de/f47d546eabc9beaf618b0c570f1083de1.gif)
![电磁场与电磁波第2章1_第2页](http://file4.renrendoc.com/view/f47d546eabc9beaf618b0c570f1083de/f47d546eabc9beaf618b0c570f1083de2.gif)
![电磁场与电磁波第2章1_第3页](http://file4.renrendoc.com/view/f47d546eabc9beaf618b0c570f1083de/f47d546eabc9beaf618b0c570f1083de3.gif)
![电磁场与电磁波第2章1_第4页](http://file4.renrendoc.com/view/f47d546eabc9beaf618b0c570f1083de/f47d546eabc9beaf618b0c570f1083de4.gif)
![电磁场与电磁波第2章1_第5页](http://file4.renrendoc.com/view/f47d546eabc9beaf618b0c570f1083de/f47d546eabc9beaf618b0c570f1083de5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.1电场力、电场强度与电位1.电场力与电场强度1)静止点电荷的作用力——库仑定律适用条件
两个可视为点电荷的带电体之间相互作用力;
无限大真空情况(式中F/m)可推广到无限大各向同性均匀介质中
当真空中引入第三个点电荷时,试问与相互间的作用力改变吗?为什么?结论:电场力符合矢量叠加原理单位:牛顿假定电荷q2=1C,于是电场力即为q1对单位电荷的作用力,我们将这个特定大小的电场力称为电场强度矢量点电荷q上的作用力单位:牛顿/库仑2)线电荷的作用力设线电荷密度为线电荷dq在空间产生的电场强度为:线电荷在整个空间产生的电场强度为:3)面电荷的作用力设面电荷密度为面电荷ds在空间产生的电场强度为:面电荷在空间产生的电场强度为:4)体电荷的作用力设体电荷密度为面电荷在空间产生的电场强度为:2.电位已知试验电荷q在电场中的受力为在静电场中欲使试验电荷q处于平衡状态,应有一外力与电场力大小相等,方向相反,即于是,试验电荷q在静电场中由A点移动到B点时外力需做的功为我们将静电场内单位正电荷从A点移动到B点时外力所做的功称为点B和点A之间的电位差在自由空间,如果点电荷位于原点,原点到场点A的距离为RA原点到场点B的距离为RB,则B点和A点之间的电位差为积分表明,空间两点B和A之间的电位差只与场点所在位置有关,而与积分路径无关。因此,在静电场中可将下列左式改写成一个具有普遍意义的式子(右式)
得到空间一段线元上两端点间的电位差为若单位正电荷是从无穷远处出发移到B点的,则电位差为或写成可得电位与电场强度的关系为
此式提供了求解静电场中电场强度的一种方法,即把求解电场强度的问题变成先求解电位而后再通过微分关系求电场强度。一般情况下,用这种方法比直接求解电场强度要简便。2.2磁场力、磁感应强度与磁位1.磁场力与磁感应强度
当电荷之间存在相对运动,比如两根载流导线,会发现另外一种力,它存在于这两线之间,是运动的电荷即电流之间的作用力,我们称其为磁场力。
假定一个电荷q以速度在磁场中运动,则它所受到磁场力为这表明:一个单位电流与另外一个电流的作用力可以用一个磁感应强度来描述。
求解磁感应强度B设磁场中载流线元为Idl,则线元Idl受力设两回路电流元为,,则这两个电流元之间的作用力为:称为毕奥—萨伐尔定律运用叠加原理,可得闭合回路1在空间所产生的磁感应强度上式是计算线电流周围磁感应强度的公式。磁感应强度的单位为牛顿/(安培米),在国际单位制中的单位为特斯拉。如果电流是分布在某一曲面上时,若面电流密度为,则面电流在空间产生的磁感应强度为
如果电流是分布在某一体积内时,若面电流密度为,则体电流在空间产生的磁感应强度为
3.矢量磁位穿过某一曲面S的磁感应强度的通量称之为穿过该曲面的磁通量由毕奥-沙伐尔定律根据梯度规则上式中的被积函数变成根据高斯定律即利用矢量恒等式可得因为根据称为矢量磁位单位是韦伯/米根据库伦规范,有约束可得矢量磁位采用面电流密度表示采用体电流密度表示这表明整个积分为零,即4.标量磁位但在没有电流分布的区域内,恒定磁场的基本方程变为这样,在无源区域内,磁场也成了无旋场,具有位场的性质,因此,象静电场一样,我们可以引入一个标量函数,即标量磁位函数注意:标量磁位的定义只是在无源区才能应用。即令对于恒定磁场,安培环路定律表明磁场是一个有旋场,在有电流处磁场的旋度不为零。
当一个电荷既受到电场力同时又受到磁场力的作用时,我们称这样的合力为洛伦兹力。我们也可以用这个表达式作为电场强度和磁场强度的定义式。即2.3洛伦兹力重要特性:电荷在电场中会受到力(称电场力)的作用。E取决于源(带电体)的电量、形状及分布情况,它可以是时变的点电荷产生的场及所受的力是计算其它复杂情况的基础电场实验证明:电场力大小与电荷所在位置的电场强度大小成正比,即:重要特性:在磁场中运动的电荷(电流)会受到力(称磁场力)的作用。磁感应强度矢量B:描述空间磁场的分布(大小和方向)。B的方向由磁场力和速度的方向确定。B取决于源(带电体)的电量、形状及运动分布情况磁场2.4电偶极子两个相距很近(距离为d)的等量异号点电荷+q与-q所组成的带电系统。式中和分别是两电荷到P点的距离。电偶极子的定义电偶极子在任意一点P的电位为如果两电荷沿z轴对称分布并且距离P点很远,于是近似的表示并且所以,P点电位变成当时,电偶极子平分面上的任意点处电位都为零。于是,在这个平面上如果将电荷从一点移动到另一点是没有能量损耗的。为了便于描述电偶极子,我们定义一个电偶极矩矢量,该矢量的大小为而其方向则由负电荷指向正电荷,即我们可以得到电偶极子在空间任意一点的电位为2.5磁偶极子
在定义磁偶极子之前,首先来分析一个闭合电流回路在空间所产生的磁场。正如电偶极子是常见的电场源的存在形式一样,闭合电流回路是磁场源的最常见形式。如图所示,在电流回路所产生的磁场中,任取一闭合回路
,设P是回路上的一点,则电流回路在P点处产生的磁感应强度为计算在回路上的闭合线积分有角的积分为所张立体因此,由上式可得根据势函数与有势场的对应关系,可得到空间一点P处的标量磁位与磁场强度的关系为P0是标量磁位的参考点当场源电流分布在有限区域内时,一般将参考点选在无穷远处,此时P点的标量磁位为可得空间任意点P的标量磁位为其中的是点P对电流回路所张的立体角因为一般情况下,求任意点P对回路面积的立体角并不很容易,但是当P点与回路的距离比起电流回路的尺寸大得多的时候立体角可以近似地表示为可得到电流回路在远区P点处产生的标量磁位其中是与的夹角。为了便于描述磁偶极子,我们定义一个磁偶极矩矢量经过整理可见,磁偶极子与电偶极子不同,它不能在物理上实现,在工程上它是一个载有交变电流的小圆环的等效模型。大小方向由确定即因此2.6由电通量与高斯定律导出麦克斯韦第一方程规定电力线的数目就称为电通量。一个电荷q所产生的电力线条数(即电通量)等于用库仑表示的电荷的大小。于是,通过整个球面的电通量为电通量密度与电场强度的关系为设半径为R的球面中有点电荷q,用符号表示球面上的电通量密度,即根据高斯定律可得麦克斯韦第一方程:或若闭合曲面所包围的电荷多于一个以上,则电通量关系应改写为并且电场强度穿出球面的电场强度通量为2.7由电磁感应定律与斯托克斯定律导出麦克斯韦第二方程法拉第电磁感应定律可得麦克斯韦第二方程:感应电动势闭合路径所包围的磁通根据斯托克斯定律2.8由磁通量与高斯定律导出麦克斯韦第三方程可得麦克斯韦第三方程:根据高斯定律磁通连续性原理穿过开表面积S的磁通1.传导电流、运流电流和位移电流自由电荷在有阻力区域(导电媒质)中作有规则运动而形成传导电流2.9由安培环路定律与斯托克斯定律导出麦克斯韦第四方程η为电阻率,由电场强度与电势的关系有
此式说明传导电流密度服从于欧姆定律(ohm’slaw),并且传导电流为传导电流的电流密度与电场强度的关系为:
因此电荷在无阻力空间作有规则运动而形成。运流电流不服从于欧姆定律。运流电流假设存在一个电荷体密度为的区域,在电场作用下,电荷以平均速度v运动,在dt时间内,电荷运动的距离为dl则如果存在一个面积元dS,当运动电荷垂直穿过面积元时,dt时间内穿过的总电量为式中运流电流密度为通常,传导电流与运流电流并不同时存在。则穿过的电流为所以,运流电流为则穿过闭合面S的位移电流为:电介质内部的分子束缚电荷作微观位移而形成位移电流作一个闭合面S,假定其中所包围的电量为q式中位移电流密度2.电流连续性原理麦克斯韦假设,S面内自由电量q的增长应与穿出的位移电流相一致,并且若指定穿出S面的电流为正,则
在时变电磁场空间,围绕着通电导体作一闭合面S,则穿入的传导电流和运流电流应等于S面内自由电量q的增加率,即于是可得此式称为电流连续性原理电流连续性原理表明:在时变场中,在传导电流中断处必有运流电流或位移电流接续。其中称为全电流密度或
运用高斯定律则有积分形式的电流连续性方程微分形式的电流连续性方程设3.麦克斯韦第四方程
静电场的环流为零稳恒磁场的环流如何呢?说明静电场是保守场;对稳恒磁场环流的研究形成了安培环路定理。
安培环路定理与环路成右旋关系的电流取正。
在真空中的稳恒电流磁场中,磁感应强度
沿任意闭合曲线的线积分(也称的环流),等于穿过该闭合曲线的所有电流强度(即穿过以闭合曲线为边界的任意曲面的电流强度)的代数和的μ0倍。当电流呈体分布时定义自由空间用磁场强度表示的磁通密度为
则安培环路定律可写成
在时变场中,应将安培环路定律中的电流拓广为全电流,即
其中麦克斯韦第四方程由斯托克斯定律得
即2.10微分形式的麦克斯韦方程组
将上面推导出的麦克斯韦方程列写在一起,就得到了微分形式的麦克斯韦方程组。或将电场与其场源——电荷密度联系了起来,实际上,它是库仑定律的另一种形式。
第一方程表明了随时间变化的磁场会产生电场——这是法拉第电磁感应定律的微分形式。
第二方程表明了在形成磁场的源中,不存在“点磁荷——磁力线始终闭合。
第三方程表明了产生磁场的源是电流或变化的电场——安培定律的另一种表现形式。
第四方程
例2.2P532.11积分形式的麦克斯韦方程组
根据高斯定理和斯托克斯定理,可将微分形式的麦克斯韦方程转化为积分形式的麦克斯韦方程。转化为第一方程表明,电场是有散度场,即电场可以由点源电荷所激发;第三方程表明,磁场为无散度场,即磁场不可能由单极磁荷所激发;而第二和第四方程则描述了电场与磁场相互依存、相互制约并且相互转化。其中引出了三个媒质特性方程以上即为麦克斯韦所总结的微分形式(包括三个媒质特性方程)与积分形式(包括三个媒质特性方程)的电磁场方程组,又称为电磁场的完整方程组。其所以称为“完整”方程组,是因为方程组全面地描述了作为统一的电磁场的两个方面——电场与磁场的相互关系,以及电场、磁场本身所具有的规律,和电场、磁场与其所处空间的媒质的关系。2.12麦克斯韦方程的时谐形式
时变电磁场的一种最重要的类型是时间简谐场,简称时谐场。所谓时谐场即激励源按照单一频率随时间作正弦变化时所激发的也随时间按照正弦变化的场。在线性系统中,一个正弦变化的源在系统中所有的点都将产生随时间按照同样规律(正弦)变化的场。对于时谐场,我们可以用相量分析获得单频率(单色)的稳态响应。微分形式的时谐表示积分形式的时谐表示例2.52.13电磁场的能量与坡印廷矢量
坡印廷矢量是描述电磁场能量流动的物理量。
由麦克斯韦方程组可以导出电磁场能量的守恒方程.麦克斯韦方程组如下两式相减,可得式中,令称其为坡印廷矢量用点乘方程(4)用点乘方程(2)坡印廷
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 华师大版数学七年级上册《2.13 有理数的混合运算》听评课记录2
- 《两汉的科技和文化》名师听课评课记录(新部编人教版七年级上册历史)
- 陕教版道德与法治九年级下册9.2《做负责公民》听课评课记录
- 现场安全方案协议书(2篇)
- 人教部编版八年级下册道德与法治1.2《治国安邦的总章程》 听课评课记录
- 小学数学-五年级下册-1-1观察物体(听评课记录)
- 部编版八年级历史上册《第17课 中国工农红军长征》表格式听课评课记录
- 中图版历史七年级下册第12课《影响世界的宋元科技成就》听课评课记录
- 鲁教版历史六年级上册第8课《大变革的时代》听课评课记录
- 五年级上册数学听评课记录《5.5 分数基本性质》(4)-北师大版
- 2024年云南省公务员考试【申论县乡卷、行测、事业单位招聘】3套 真题及答案
- 数字媒体艺术专业行业分析报告
- 全国职业院校技能大赛高职组(市政管线(道)数字化施工赛项)考试题库(含答案)
- 湖南省长沙市长郡教育集团2024-2025学年七年级上学期期末考试英语试题(含答案)
- 公司员工升职加薪制度模板
- 2024上海市招聘社区工作者考试题及参考答案
- 2024-2025学年人教版三年级(上)英语寒假作业(九)
- 2024版市政工程承包合同签约流程规范指南2篇
- 立春气象与健康
- 河南退役军人专升本计算机真题答案
- 卵圆孔未闭病因介绍
评论
0/150
提交评论