山东省济南市第三十五中学高三数学文摸底试卷含解析_第1页
山东省济南市第三十五中学高三数学文摸底试卷含解析_第2页
山东省济南市第三十五中学高三数学文摸底试卷含解析_第3页
山东省济南市第三十五中学高三数学文摸底试卷含解析_第4页
山东省济南市第三十五中学高三数学文摸底试卷含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省济南市第三十五中学高三数学文摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若实数x,y满足,则使得z=y﹣2x取得最大值的最优解为()A.(3,0) B.(3,3) C.(4,3) D.(6,3)参考答案:C【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用数形结合即可得到结论.【解答】解:由z=y﹣2x,得y=2x+z,作出不等式对应的可行域,平移直线y=2x+z,由平移可知当直线y=2x+z经过点A时,直线y=2x+z的截距最小,此时z取得最值,由,解得,即A(4,3),即z=y﹣2x取得最大值的最优解为(4,3).故选:C【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.2.已知函数,若存在零点,则实数的取值范围是(

)A.

B. C.

D.参考答案:A略3.若方程的根在区间上,则的值为(

A.

B.1

C.或2

D.或1参考答案:D4.若将复数表示为a+bi(a,b∈R,i是虚数单位)的形式,则的值为()A.﹣2 B. C.2 D.参考答案:A【考点】复数的基本概念;复数代数形式的乘除运算.【分析】复数的分子、分母同乘分母的共轭复数,复数化简为a+bi(a,b∈R)的形式.【解答】解:=1﹣2i,则a=1,b=﹣2;则=﹣2,故选A5.已知的导函数,则的图像是参考答案:6.在的任一排列中,使相邻两整数互质的排列方式种数共有(

)A.

B.

C.

D.参考答案:B略7.a1,a2,a3,a4是各项不为零的等差数列,且公差d≠0,若将此数列删去a2,得到的数列a1,a3,a4是等比数列,则的值为()A.1 B.﹣4 C.﹣1 D.4参考答案:B【考点】等差数列的性质.【专题】计算题;等差数列与等比数列.【分析】利用等比中项的性质,得a32=a1?a4,进而求得a1和d的关系,即可得出结论.【解答】解:若a1、a3、a4成等比数列,则a32=a1?a4∴(a1+2d)2=a1(a1+3d)∴a12+4a1d+4d2=a12+3a1d∴4d2=﹣a1d∵d≠0∴4d=﹣a1则=﹣4故选:B.【点评】本题主要考查了等差数列和等比数列的性质.考查了等差数列通项公式和等比中项的性质的灵活运用.8.记集合和集合表示的平面区域分别为若在区域内任取一点,则点落在区域的概率为A.

B.

C.

D.参考答案:A区域为圆心在原点,半径为4的圆,区域为等腰直角三角形,两腰长为4,所以,故选A.9.据国家统计局发布的数据,2019年11月全国CPI(居民消费价格指数),同比上涨4.5%,CPI上涨的主要因素是猪肉价格的上涨,猪肉加上其他畜肉影响CPI上涨3.27个百分点.下图是2019年11月CPI一篮子商品权重,根据该图,下列结论错误的是(

)A.CPI一篮子商品中所占权重最大的是居住B.CPI一篮子商品中吃穿住所占权重超过50%C.猪肉在CPI一篮子商品中所占权重约为2.5%D.猪肉与其他畜肉在CPI一篮子商品中所占权重约为0.18%参考答案:D【分析】A.从第一个图观察居住占23%,与其他比较即可.B.CPI一篮子商品中吃穿住所占23%+8%+19.9%=50.9%,再判断.C.食品占19.9%,再看第二个图,分清2.5%是在CPI一篮子商品中,还是在食品中即可.D.易知猪肉与其他畜肉在CPI一篮子商品中所占权重约为2.1%+2.5%=4.6%.【详解】A.CPI一篮子商品中居住占23%,所占权重最大的,故正确.B.CPI一篮子商品中吃穿住所占23%+8%+19.9%=50.9%,权重超过50%,故正确.C.食品占中19.9%,分解后后可知猪肉是占在CPI一篮子商品中所占权重约为2.5%,故正确.D.猪肉与其他畜肉在CPI一篮子商品中所占权重约为2.1%+2.5%=4.6%,故错误.故选:D【点睛】本题主要考查统计图的识别与应用,还考查了理解辨析的能力,属于基础题.10.已知抛物线,过其焦点且斜率为-1的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为-2,则该抛物线的准线方程为A.x=l

B.

C.

D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.已知等差数列{}中,=32,=8,则此数列的前10项和=

.参考答案:190由,解得,由,解得。所以。12.设,直线圆.若圆既与线段又与直线有公共点,则实数的取值范围是

.参考答案:13.计算=

;参考答案:略14.已知,则的取值范围是_________________.参考答案:15.已知定义在R的奇函数满足,且时,,下面四种说法①;②函数在[-6,-2]上是增函数;③函数关于直线对称;④若,则关于的方程在[-8,8]上所有根之和为-8,其中正确的序号

参考答案:①④由得,所以函数的周期是8.又函数为奇函数,所以由,所以函数关于对称。同时,即,函数也关于对称,所以③不正确。又,函数单调递增,所以当函数递增,又函数关于直线对称,所以函数在[-6,-2]上是减函数,所以②不正确。,所以,故①正确。若,则关于的方程在[-8,8]上有4个根,其中两个根关于对称,另外两个关于对称,所以关于对称的两根之和为,关于对称的两根之和为,所以所有根之后为,所以④正确。所以正确的序号为①④。16.若某程序框图如图所示,则该程序运行后输出的值是.参考答案:3考点:循环结构.专题:压轴题;图表型.分析:根据所给数值判定是否满足判断框中的条件,然后执行循环语句,一旦不满足条件就退出循环,执行语句输出i,从而到结论.解答:解:当输入的值为n=12时,n不满足判断框中的条件,n=6,n不满足判断框中的条件,n=3,n满足判断框中的条件,n=10,i=2,n不满足判断框中的条件,n=5,n满足判断框中的条件,n=16,i=3,n不满足判断框中的条件,n=8,n不满足判断框中的条件,n=4,n不满足判断框中的条件,n=2,n不满足判断框中的条件,n=1,n满足下面一个判断框中的条件,退出循环,即输出的结果为i=3,故答案为:3.点评:本题主要考查了循环结构,是当型循环,当满足条件,执行循环,属于基础题.17.已知集合A=,B={y|y=2x,x∈R},则A∪B=;(?RA)∩B=.参考答案:[0,+∞),(2,+∞)【考点】交、并、补集的混合运算.【专题】集合.【分析】先求出集合A,B,再根据集合的集合交,并,补运算即可.【解答】解:A==[0,2],B={y|y=2x,x∈R}=(0,+∞),∴A∪B=[0,+∞),(?RA)=(﹣∞,0)∪(2,+∞),(?RA)∩B=(2,+∞),故答案为:[0,+∞),(2,+∞).【点评】本题主要考查了集合交,并,补的混合运算,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数,.(1)求函数的最小正周期;(2)若函数在处取得最大值,求的值.参考答案:解:(1),

的最小正周期为2

(2)依题意,(),由周期性,略19.如图,在三棱柱,底面,,,,分别是棱,的中点,为棱上的一点,且平面.()求的值.()求证:.()求二面角的余弦值.参考答案:()∵平面,又平面,平面平面,∴,∵为的点,且侧面为平行四边形,∴为中点,∴.()证明:∵底面,,,又,如图,以为原点建立空间直角坐标系,设,则由可得,,,,∵,分别是,的中点,∴,,∴,∴,∴.()设平面的法向量为,则:,即,令,则,,∴,由已知可得平面的法向量,∴,由题意知二面角为钝角,∴二面角的余弦值为.20.已知椭圆的两个焦点分别为,,短轴的两个端点分别为,.(1)若为等边三角形,求椭圆的方程;(2)若椭圆的短轴为2,过点的直线与椭圆相交于,两点,且,求直线的方程.参考答案:(1);(2)或.(2)容易求得椭圆的方程为,当直线的斜率不存在时,其方程为,不符合题意;当直线的斜率存在时,设直线的方程为,由得,设,,则,,,,∵,∴,即,,解得,即,故直线的方程为或.考点:1.椭圆的标准方程及其性质;2.直线与椭圆的位置关系.【思路点睛】对于圆锥曲线的综合问题,①要注意将曲线的定义性质化,找出定义赋予的条件;②要重视利用图形的几何性质解题(本书多处强调);③要灵活运用韦达定理、弦长公式、斜率公式、中点公式、判别式等解题,巧妙运用“设而不求”、“整体代入”、“点差法”、“对称转换”等方法.21.如图所示的多面体,它的正视图为直角三角形,侧视图为正三角形,俯视图为正方形(尺寸如图所示),E为VB的中点.(1)求证:VD∥平面EAC;(2)求二面角A—VB—D的余弦值.参考答案:18.解:(1)由正视图可得:平面VAB⊥平面ABCD,连接BD交AC于O点,连EO,由已知可得BO=OD,VE=EB

∴VD∥EO

---------------------------------------------4

又VD平面EAC,EO平面EAC

∴VD∥平面EAC

---------------------------------------------------6

(2)设AB的中点为P,则由题意可知VP⊥平面ABCD,建立如图所示坐标系

设=(x,y,z)是平面VBD法向量, =(-2,2,0)

--------------------------8

由,

-------------------------10

∴二面角A—VB—D的余弦值------------------12

略22.设{an}是等差数列,其前n项和为Sn(n∈N*);{bn}是等比数列,公比大于0,其前n项和为Tn(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.(Ⅰ)求Sn和Tn;(Ⅱ)若Sn+(T

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论