人教版九年级数学上册 实际问题与二次函数-详解与练习(含答案)_第1页
人教版九年级数学上册 实际问题与二次函数-详解与练习(含答案)_第2页
人教版九年级数学上册 实际问题与二次函数-详解与练习(含答案)_第3页
人教版九年级数学上册 实际问题与二次函数-详解与练习(含答案)_第4页
人教版九年级数学上册 实际问题与二次函数-详解与练习(含答案)_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

实际问题与二次函数一、利用函数求图形面积的最值问题如图1,用长为18米的篱笆(虚线部分)和两面墙围成矩形苗圃。设矩形的一边长为x(米),面积为y(平方米),求y关于x的函数关系式;当x为何值时,所围成的苗圃面积最大?最大面积是多少?解:(1)设矩形的长为x(米),则宽为(18-x)(米),根据题意,得:;又∵(2)∵中,a=-1<0,∴y有最大值,即当时,故当x=9米时,苗圃的面积最大,最大面积为81平方米。如图2,用长为50米的篱笆围成一个养鸡场,养鸡场的一面靠墙。问如何围,才能使养鸡场的面积最大?解:设养鸡场的长为x(米),面积为y(平方米),则宽为()(米),根据题意,得:;又∵∵中,a=<0,∴y有最大值,即当时,故当x=25米时,养鸡场的面积最大,养鸡场最大面积为平方米。例3、将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗?若能,求出两段铁丝的长度;若不能,请说明理由.(1)解:设剪成两段后其中一段为xcm,则另一段为(20-x)cm由题意得:解得:当时,20-x=4;当时,20-x=16答:这段铁丝剪成两段后的长度分别是16厘米、4厘米。(2)不能理由是:设第一个正方形的边长为xcm,则第二个正方形的边长为cm,围成两个正方形的面积为ycm2,根据题意,得:,∵中,a=2>0,∴y有最小值,即当时,=12.5>12,故两个正方形面积的和不可能是12cm2.练习1、如图,正方形EFGH的顶点在边长为a的正方形ABCD的边上,若AE=x,正方形EFGH的面积为y.(1)求出y与x之间的函数关系式;(2)正方形EFGH有没有最大面积?若有,试确定E点位置;若没有,说明理由.解:∵四边形ABCD是边长为a米的正方形,∴∠A=∠D=90°,AD=a米.∵四边形EFGH为正方形,∴∠FEH=90°,EF=EH.在△AEF与△DHE中,∵∠A=∠D,∠AEF=∠DHE=90°-∠DEH,EF=EH∴△AEF≌△DHE(AAS),∴AE=DH=x米,AF=DE=(a-x)米,∴y=EF2=AE2+AF2=x2+(a-x)2=2x2-2ax+a2,即y=2x2-2ax+a2;(2)∵y=2x2-2ax+a2=2(x-)2+,∴当x=时,S有最大值.故当点E是AB的中点时,面积最大.二、利用二次函数解决抛物线形建筑物问题例题1如图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是.图(1)图(2)图(1)图(2).练习1某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰在水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上,抛物线形状如图(1)所示.图(2)建立直角坐标系,水流喷出的高度y(米)与水平距离x(米)之间的关系是.请回答下列问题:(1)柱子OA的高度是多少米?(2)喷出的水流距水平面的最大高度是多少米?(3)若不计其他因素,水池的半径至少要多少米才能使喷出的水流不至于落在池外?2.一座桥如图,桥下水面宽度AB是20米,高CD是4米.要使高为3米的船通过,则其宽度须不超过多少米.(1)如图1,若把桥看做是抛物线的一部分,建立如图坐标系.①求抛物线的解析式;②要使高为3米的船通过,则其宽度须不超过多少米?(2)如图2,若把桥看做是圆的一部分.①求圆的半径;②要使高为3米的船通过,则其宽度须不超过多少米?1.解:(1)把x=0代入抛物线的解析式得:y=,即柱子OA的高度是(2)由题意得:当x=时,y=,即水流距水平面的最大高度(3)把y=0代入抛物线得:=0,解得,x1=(舍去,不合题意),x2=故水池的半径至少要米才能使喷出的水流不至于落在池外2.(1)①设抛物线解析式为:,∵桥下水面宽度AB是20米,高CD是4米,∴A(﹣10,0),B(10,0),D(0,4),∴,解得:,∴抛物线解析式为:;②∵要使高为3米的船通过,∴,则,解得:,∴EF=10米;(2)①设圆半径r米,圆心为W,∵BW2=BC2+CW2,∴,解得:;②在RT△WGF中,由题可知,WF=14.5,WG=14.5﹣1=13.5,根据勾股定理知:GF2=WF2﹣WG2,即GF2=14.52﹣13.52=28,所以GF=,此时宽度EF=米.三、利用抛物线解决最大利润问题例题1某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看做一次函数:y=-10x+500.(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(6分)(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3分)(3)物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)(3分)试题解析:(1)由题意得出:,∵,∴当销售单价定为35元时,每月可获得最大利润.(2)由题意,得:,解这个方程得:x1=30,x2=40.∴李明想要每月获得2000元的利润,销售单价应定为30元或40元.(3)∵,∴抛物线开口向下.∴当30≤x≤40时,W≥2000.∵x≤32,∴当30≤x≤32时,W≥2000.设成本为P(元),由题意,得:,∵k=200<0,∴P随x的增大而减小.∴当x=32时,P最小=3600.练习1.某玩具批发商销售每只进价为40元的玩具,市场调查发现,若以每只50元的价格销售,平均每天销售90只,单价每提高1元,平均每天就少销售3只.(1)平均每天的销售量y(只)与销售价x(元/只)之间的函数关系式为;(2)求该批发商平均每天的销售利润W(元)与销售只x(元/只)之间的函数关系式;(3)物价部门规定每只售价不得高于55元,当每只玩具的销售价为多少元时,可以获得最大利润?最大利润是多少元(1)根据题意知销售量y(只)与销售价x(元/只)之间的函数关系式为y=90-3(x-50)=-3x+240;(2)根据“总利润=每件商品的利润×销售量”可知w=(x-40)y=(x-40)(-3x+240)=-3x2+360x-9600;(3)求获得最大利润,也就是求函数w=-3x2+360x-9600的最大值.试题解析:(1)y=90-3(x-50)即y=-3x+240;(2)w=(x-40)y=(x-40)(-3x+240)=-3x2+360x-9600;(3)当x≤60,y随x的增大而减小,当x=55时,w最大=1125所以定价为55元时,可以获得最大利润是1125元.2.为了落实国务院的指示精神,地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(1)由题意得:,∴w与x的函数关系式为:.(2),∵﹣2<0,∴当x=30时,w有最大值.w最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.3.为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?(1)当时,,,∴政府这个月为他承担的总差价为600元。(2)依题意得,,,∴当时,有最大值4000.∴当销售单价定为30元时,每月可获得最大利润4000.(3)由题意得:,解得:,.,抛物线开口向下,∴结合图象可知:当时,.又,∴当时,w≥3000.设政府每个月为他承担的总差价为元,.,随的增大而减小.∴当时,有最小值500.∴销售单价定为25元时,政府每个月为他承担的总差价最少为500元.4.某文具店销售一种进价为10元/个的签字笔,物价部门规定这种签字笔的售价不得高于14元/个,根据以往经验:以12元/个的价格销售,平均每周销售签字笔100个;若每个签字笔的销售价格每提高1元,则平均每周少销售签字笔10个.设销售价为x元/个.(1)该文具店这种签字笔平均每周的销售量为个(用含x的式子表示);(2)求该文具店这种签字笔平均每周的销售利润w(元)与销售价x(元/个)之间的函数关系式;(3)当x取何值时,该文具店这种签字笔平均每周的销售利润最大?最大利润是多少元?(1)(220-10x);(2)3分5分6分∵抛物线的开口向下,在对称轴直线x=16的左侧,随的增大而增大.8分由题意可知,9分∴当x=14时,最大为320.∴当x=14时,该文具店这种签字笔平均每周的销售利润最大是320元.利用二次函数解决动点问题例1如图8,如图9,在平行四边形ABCD中,AD=4cm,∠A=60°,BD⊥AD.一动点P从A出发,以每秒1cm的速度沿A→B→C的路线匀速运动,过点P作直线PM,使PM⊥AD.(1)当点P运动2秒时,设直线PM与AD相交于点E,求△APE的面积;(2)当点P运动2秒时,另一动点Q也从A出发沿A→B→C的路线运动,且在AB上以每秒1cm的速度匀速运动,在BC上以每秒2cm的速度匀速运动.过Q作直线QN,使QN∥PM.设点Q运动的时间为t秒(0≤t≤10),直线PM与QN截平行四边形ABCD所得图形的面积为Scm2.①求S关于t的函数关系式;②求S的最大值.解:(1)当点P运动2秒时,AP=2cm,由∠A=60°,知AE=1,PE=.∴SΔAPE=.(2)①当0≤t≤6时,点P与点Q都在AB上运动,设PM与AD交于点G,QN与AD交于点F,则AQ=t,AF=,QF=,AP=t+2,AG=1+,PG=.∴此时两平行线截平行四边形ABCD的面积为S=.当6≤t≤8时,点P在BC上运动,点Q仍在AB上运动.设PM与DC交于点G,QN与AD交于点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论