版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初中数学教案范本6篇教学目标
1.使学生正确理解的意义,把握的三要素;
2.使学生学会由上的已知点说出它所表示的数,能将有理数用上的点表示出来;
3.使学生初步理解数形结合的思想方法。
教学重点和难点
重点:初步理解数形结设计
一、从学生原有认知构造提出问题
1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?
2.用“射线”能不能表示有理数?为什么?
3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?
待学生答复后,教师指出,这就是我们本节课所要学习的内容——.
二、讲授新课
让学生观看挂图——放大的温度计,同时教师赐予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,依据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度。在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.
与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零。详细方法如下(边说边画):
1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,假如所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);
2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);
3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…
提问:我们能不能用这条直线表示任何有理数?(可列举几个数)
在此根底上,给出的定义,即规定了原点、正方向和单位长度的直线叫做。
进而提问学生:在上,已知一点P表示数-5,假如上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?假如单位长度转变呢?假如直线的正方向转变呢?
通过上述提问,向学生指出:的三要素——原点、正方向和单位长度,缺一不行。
三、运用举例变式练习
例1画一个,并在上画出表示以下各数的点:
例2指出上A,B,C,D,E各点分别表示什么数。
课堂练习
示出来。
2.说出下面上A,B,C,D,O,M各点表示什么数?
最终引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示。
四、小结
指导学生阅读教材后指出:是特别重要的数学工具,它使数和直线上的点建立了对应关系,它提醒了数和形之间的内在联系,为我们讨论问题供应了新的方法。
本节课要求同学们能把握的三要素,正确地画出,在此还要提示同学们,全部的有理数都可用上的点来表示,但是反过来不成立,即上的点并不是都表示有理数,至于上的哪些点不能表示有理数,这个问题以后再讨论。
五、作业
1.在下面上:
(1)分别指出表示-2,3,-4,0,1各数的点。
(2)A,H,D,E,O各点分别表示什么数?
2.在下面上,A,B,C,D各点分别表示什么数?
3.以下各小题先分别画出,然后在上画出表示大括号内的一组数的点:
(1){-5,2,-1,-3,0};(2){-4,2.5,-1.5,3.5};
初中数学教案篇二
教学目标
1、使学生熟悉字母表示数的意义,了解字母表示数是数学的一大进步;
2、了解代数式的概念,使学生能说出一个代数式所表示的数量关系;
3、通过对用字母表示数的讲解,初步培育学生观看和抽象思维的力量;
4、通过本节课的教学,使学生深刻体会从特别到一般的的数学思想方法。
教学建议
1、学问构造:本小节先回忆了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。
2、教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地表达用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法,现在,从详细的数过渡到用字母表示数,渗透了抽象概括的思维方法,在熟悉上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明白代数式的概念。对代数式的概念可以从三个方面去理解:
(1)从详细的数到用字母表示数,是抽象思维的开头,表达了特别与一般的辨证关系,用字母表示数具有简明、普遍的优越性。
(2)代数式中并不要求数和表示数的字母同时消失,单独的一个数和字母也是代数式。如:2,m都是代数式。
xxx等都不是代数式。
3、教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,肯定要理清代数式中含有的各种运算及其挨次。用语言表达代数式的意义,详细说法没有统一规定,以简明而不引起误会为动身点。
如:说出代数式7(a-3)的意义。
分析7(a-3)读成7乘a减3,这样就产生歧义,毕竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最终运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。
4、书写代数式的留意事项:
(1)代数式中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面。
如3×a,应写作3a或写作3a,a×b应写作3.a或写作ab。带分数与字母相乘,应把带分数化成假分数,数字与数字相乘一般仍用“×”号。
(2)代数式中有除法运算时,一般根据分数的写法来写。
(3)含有加减运算的代数式需注明单位时,肯定要把整个式子括起来。
5、对本节例题的分析:
例1是用代数式表示几个比拟简洁的数量关系,这些小学都学过。比拟简单一些的数量关系的代数式表示,课文安排在下一节中特地介绍。
例2是说出一些比拟简洁的代数式的意义。由于代数式中用字母表示数,所以把字母也看成数,一种特别的数,就可以像对待原来比拟熟识的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已。
6、教法建议
(1)由于这一章学问大局部在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知构造上,提出新的问题。这样即复习了旧学问,又引出了新学问,能激发学生的学习兴趣。在教学中,肯定要留意发挥本章承上启下的作用,搞好小学数学与初中代数的连接,使学生有一个良好的开端。
(2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比拟熟识、贴近现实生活的例子),使学生从感性上熟悉什么是代数式,理清代数式中的运算和运算挨次,才能正确说出一个代数式所表示的数量关系,从而熟悉字母表示数的意义——普遍性、简明性,也为列代数式做预备。
(3)条件比拟好的学校,教师可选用一些多媒体课件,激发学生的学习兴趣,增加学生自主学习的力量。
(4)教师在讲解第一节之前,肯定要对全章内容和课时安排有一个了解,留意前后学问的连接,只有这样,我们教师才能教给学生系统的而不是一些零散的学问,久而久之,学生头脑中自然会形成一个完整的学问体系。
(5)由于是新学期代数的第一节课,教师肯定要给学生一个好印象,好的开端等于胜利了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展现自己的才华。比,英语口语好的教师,可以用英语做一个自我介绍,然后为学生说一段祝愿语。其次,上课时尽量使用多种语言与学生沟通,其中包括情感语言(眉目语言、手势语言等),让学生感受到教师对他的关怀。
7、教学重点、难点:
重点:用字母表示数的意义
难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。
教学设计例如
课堂教学过程设计
一、从学生原有的认知构造提出问题
1、在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?
(通过启发、归纳最终师生共同得出用字母表示数的五种运算律)
(1)加法交换律a+b=b+a;
(2)乘法交换律a·b=b·a;
(3)加法结合律(a+b)+c=a+(b+c);
(4)乘法结合律(ab)c=a(bc);
(5)乘法安排律a(b+c)=ab+ac
指出:
(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;
(2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数
2、(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?
3、若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?
4、(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?
(用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)
此时,教师应指出:
(1)用字母表示数可以把数或数的关系,简明的表示出来;
(2)在公式与中,用字母表示数也会给运算带来便利;
(3)像上面消失的a,5,15÷3,4a,a+b,s/t以及a2等等都叫代数式。那么毕竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容。
三、讲授新课
1、代数式
单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式。学习代数,首先要学习用代数式表示数量关系,明确代数上的意义。
2、举例说明
例1填空:
(1)每包书有12册,n包书有__________册;
(2)温度由t℃下降到2℃后是_________℃;
(3)棱长是a厘米的正方体的体积是_____立方厘米;
(4)产量由m千克增长10%,就到达_______千克
(此例题用投影给出,学生口答完成)
解:(1)12n;(2)(t-2);(3)a3;(4)(1+10%)m
例2说出以下代数式的意义:
解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;
(5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方
说明:
(1)此题应由教师示范来完成;
(2)对于代数式的意义,详细说法没有统一规定,以简明而不致引起误会为动身点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等
例3用代数式表示:
(1)m与n的和除以10的商;
(2)m与5n的差的平方;
(3)x的2倍与y的和;
(4)ν的立方与t的3倍的积
分析:用代数式表示用语言表达的数量关系要留意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面
四、课堂练习
1、填空:(投影)
(1)n箱苹果重p千克,每箱重_____千克;
(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;
(3)底为a,高为h的三角形面积是______;
(4)全校学生人数是x,其中女生占48%?则女生人数是____,男生人数是____
2、说出以下代数式的意义:(投影)
3、用代数式表示:(投影)
(1)x与y的和;
(2)x的平方与y的立方的差;
(3)a的60%与b的2倍的和;
(4)a除以2的商与b除3的商的和。
五、师生共同小结
首先,提出如下问题:
1、本节课学习了哪些内容?
2、用字母表示数的意义是什么?
3、什么叫代数式?
教师在学生答复上述问题的根底上,指出:
①代数式实际上就是算式,字母像数字一样也可以进展运算;
②在代数式和运算结果中,如有单位时,要正确地使用括号。
六、作业
1、一个三角形的三条边的长分别的a,b,c,求这个三角形的周长
2、张强比王华大3岁,当张强a岁时,王华的年龄是多少?
3、飞机的速度是汽车的40倍,自行车的速度是汽车的1/3,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?
4、a千克大米的售价是6元,1千克大米售多少元?
5、圆的半径是R厘米,它的面积是多少?
6、用代数式表示:
(1)长为a,宽为b米的长方形的周长;
(2)宽为b米,长是宽的2倍的长方形的周长;
(3)长是a米,宽是长的1/3的长方形的周长;
(4)宽为b米,长比宽多2米的长方形的周长。
数学初中教案篇三
教学目标
1、了解公式的意义,使学生能用公式解决简洁的实际问题;
2、初步培育学生观看、分析及概括的力量;
3、通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。
教学建议
一、教学重点、难点
重点:通过详细例子了解公式、应用公式。
难点:从实际问题中发觉数量之间的关系并抽象为详细的公式,要留意从中反响出来的归纳的思想方法。
二、重点、难点分析
人们从一些实际问题中抽象出很多常用的、根本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清晰公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。详细计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过试验,从得到的反映数量关系的一些数据(如数据表)动身,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们熟悉和改造世界带来许多便利。
三、学问构造
本节一开头首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观看归纳推导公式解决一些实际问题。整节内容渗透了由一般到特别、再由特别到一般的辨证思想。
四、教法建议
1、对于给定的可以直接应用的公式,首先在给出详细例子的前提下,教师创设情境,引导学生清楚地熟悉公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在详细例子的根底上,使学生参加挖倔其中蕴涵的思想,明确公式的应用具有普遍性,到达对公式的敏捷应用。
2、在教学过程中,应使学生熟悉有时问题的解决并没有现成的公式可套,这就需要学生自己尝摸索求数量之间的关系,在已有公式的根底上,通过分析和详细运算推导新公式。
3、在解决实际问题时,学生应观看哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再依据公式进一步地解决问题。这种从特别到一般、再从一般到特别熟悉过程,有助于提高学生分析问题、解决问题的力量。
初中数学教案篇四
教学目标
1、把握有理数的概念,会对有理数根据肯定的标准进展分类,培育分类力量;
2、了解分类的标准与分类结果的相关性,初步了解“集合”的含义;
3、体验分类是数学上的常用处理问题的方法。
教学难点正确理解分类的标准和根据肯定的标准进展分类
学问重点正确理解有理数的概念
教学过程(师生活动)设计理念
探究新知在前两个学段,我们已经学习了许多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).
问题1:观看黑板上的9个数,并给它们进展分类.
学生思索争论和沟通分类的状况.
学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应赐予引导和鼓舞.
例如,
对于数5,可这样问:5和5.1有一样的类型吗?5可以表示5个人,而5.1可以表示人数吗?(不行以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)
通过教师的引导、鼓舞和不断完善,以及学生自己的概括,最终归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,’.
根据书本的说法,得出“整数”“分数”和“有理数”的概念.
看书了解有理数名称的由来.
“统称”是指“合起来总的名称”的意思.
试一试:根据以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是根据整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参加
学生自己尝试分类时,可能会很粗略,教师赐予引导和鼓舞,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
有理数的分类表要在黑板或媒体上展现,分类的标准要引导学生去体会
练一练1,任意写出三个有理数,并说出是什么类型的数,与同伴进展沟通.
2,教科书第10页练习.
此练习中消失了集合的概念,可向学生作如下的说明.
把一些数放在一起,就组成了一个数的集合,简称“数集”,全部有理数组成的数集叫做有理数集.类似地,全部整数组成的数集叫做整数集,全部负数组成的数集叫做负数集……;
数集一般用圆圈或大括号表示,由于集合中的数是无限的,而此题中只填了所给的几个数,所以应当加上省略号.
思索:上面练习中的四个集合合并在一起就是全体有理数的集合吗?
也可以教师说出一些数,让学生进展推断。
集合的概念不必深入绽开。
创新探究问题2:有理数可分为正数和负数两大类,对吗?为什么?
教学时,要让学生总结已经学过的数,鼓舞学生概括,通过沟通和争论,教师作适当的指导,逐步得到如下的分类表。
有理数这个分类可视学生的程度确定是否有必要教学。
应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参与分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等
小结与作业
课堂小结到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进展分类,标准不同,分类的结果也不同。
本课作业
1,必做题:教科书第18页习题1.2第1题
2,教师自行预备
本课教育评注(课堂设计理念,实际教学效果及改良设想)
1,本课在引人了负数后对所学过的数根据肯定的标准进展分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进展简洁的分类是数学力量的表达,教师在教学中应引起足够的重视.关于分类标准与分类结果的关系,分类标准确实定可向学生作适当的渗透,集合的概念比拟抽象,学生真正承受需要很长的过程,本课不要过多绽开。
2,本课具有开放性的特点,给学生供应了较大的思维空间,能促进学生积极主动地参与学习,亲自体验学问的形成过程,可避开直接进展分类所带来的枯燥性;同时还表达合作学习、沟通、探究提高的特点,对学生分类力量的养成有很好的作用。
3,两种分类方法,应以第一种方法为主,其次种方法可视学生的状况进展。
初中数学教案篇五
学问技能目标
1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;
2、利用反比例函数的图象解决有关问题。
过程性目标
1、经受对反比例函数图象的观看、分析、争论、概括过程,会说出它的性质;
2、探究反比例函数的图象的性质,体会用数形结合思想解数学问题。
教学过程
一、创设情境
上节的练习中,我们画出了问题1中函数的图象,发觉它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来争论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质。
二、探究归纳
1、画出函数的图象。
分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x≠0。
解:
1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:
2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(—6,—1)、(—3,—2)、(—2,—3)等。
3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的图象。
上述图象,通常称为双曲线(hyperbola)。
提问这两条曲线会与x轴、y轴相交吗?为什么?
学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步把握画函数图象的步骤)。
学生争论、沟通以下问题,并将争论、沟通的结果回答下列问题。
1、这个函数的图象在哪两个象限?和函数的图象有什么不同?
2、反比例函数(k≠0)的图象在哪两个象限内?由什么确定?
3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?
反比例函数有以下性质:
(1)当k0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而削减;
(2)当k0时,函数的图象在其次、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。
注:
1、双曲线的两个分支与x轴和y轴没有交点;
2、双曲线的两个分支关于原点成中心对称。
以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?
在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。
在问题2中反映了在面积肯定的状况下,饲养场的一边越长,另一边越小。
三、实践应用
例1若反比例函数的图象在其次、四象限,求m的值。
分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+10,由这两个条件可解出m的值。
解由题意,得解得。
例2已知反比例函数(k≠0),当x0时,y随x的增大而增大,求一次函数y=kx—k的图象经过的象限。
分析由于反比例函数(k≠0),当x0时,y随x的增大而增大,因此k0,而一次函数y=kx—k中,k0,可知,图象过二、四象限,又—k0,所以直线与y轴的交点在x轴的上方。
解由于反比例函数(k≠0),当x0时,y随x的增大而增大,所以k0,所以一次函数y=kx—k的图象经过一、二、四象限。
例3已知反比例函数的图象过点(1,—2)。
(1)求这个函数的解析式,并画出图象;
(2)若点A(—5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?
分析(1)反比例函数的图象过点(1,—2),即当x=1时,y=—2。由待定系数法可求出反比例函数解析式;再依据解析式,通过列表、描点、连线可画出反比例函数的图象;
(2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上。
解(1)设:反比例函数的解析式为:(k≠0)。
而反比例函数的图象过点(1,—2),即当x=1时,y=—2。
所以,k=—2。
即反比例函数的解析式为:。
(2)点A(—5,m)在反比例函数图象上,所以,
点A的坐标为。
点A关于x轴的对称点不在这个图象上;
点A关于y轴的对称点不在这个图象上;
点A关于原点的对称点在这个图象上;
例4已知函数为反比例函数。
(1)求m的值;
(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?
(3)当—3≤x≤时,求此函数的最大值和最小值。
解(1)由反比例函数的定义可知:解得,m=—2。
(2)由于—20,所以反比例函数的图象在其次、四象限内,在各象限内,y随x的增大而增大。
(3)由于在第个象限内,y随x的增大而增大,
所以当x=时,y最大值=;
当x=—3时,y最小值=。
所以当—3≤x≤时,此函数的最大值为8,最小值为。
例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。
(1)写出用高表示长的函数关系式;
(2)写出自变量x的取值范围;
(3)画出函数的图象。
解(1)由于100=5xy,所以。
(2)x0。
(3)图象如下:
说明由于自变量x0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。
四、沟通反思
本节课学习了画反比例函数的图象和探讨了反比例函数的性质。
1、反比例函数的图象是双曲线(hyperbola)。
2、反比例函数有如下性质:
(1)当k0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而削减;
(2)当k0时,函数的图象在其次、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。
五、检测反应
1、在同始终角坐标系中画出以下函数的图象:
(1);(2)。
2、已知y是x的反比例函数,且当x=3时,y=8,求:
(1)y和x的函数关系式;
(2)当时,y的值;
(3)当x取何值时?
3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。
4、已知反比例函数经过点A(2,—m)和B(n,2n),求:
(1)m和n的值;
(2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x10x2,试比拟y1和y2的大小。
2023初中数学教案模板篇六
一、教学目的:
1、理解并把握菱形的定义及两个判定方法;会用这些判定方法进展有关的论证和计算;
2、在菱形的判定方法的探究与综合应用中,培育学生的观看力量、动手力量及规律思维力量。
二、重点、难点
1、教学重点:菱形的两个判定方法。
2、教学难点:判定方法的证明方法及运用。
三、例题的意图分析
本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生把握菱形的判定方法,并会用这些判定方法进展有关的论证和计算。这些题目的推理都比拟简洁,学生把握起来不会有什么困难,可以让学生自己去完成。程度好一些的班级,可以选讲例3.
四、课堂引入
1、复习
(1)菱形的定义:一组邻边相等的平行四边形;
(2)菱形的性质1菱形的四条边都相等;
性质2菱形的对角线相互平分,并且每条对角线平分一组对角;
(3)运用菱形的定义进展菱形的判定,应具备几个条件?(判定:2个条件)
2、【问
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年标准农药买卖合同书版B版
- 2024年影视行业临时演员聘用合同范本15篇
- 2024样板间样板房室内空气治理与净化合同协议3篇
- 2024年跨国电商服务平台运营合同
- 《货币的种类和形式》课件
- 二零二五年价格保密协议范本:适用于环保科技行业3篇
- 泌尿科护理工作总结
- 2025版企业并购中涉及股份支付及业绩承诺协议3篇
- 2025版高空建筑维修作业安全协议书3篇
- 咨询服务行业助理工作要求总结
- 创业基础知识题库100道及答案
- DB11∕501-2017 大气污染物综合排放标准
- 第十五章专题训练4.电路图与实物图课件人教版物理九年级全一册
- 跳绳体育教案
- 四川省住宅设计标准
- 2024-2030年中国自然教育行业市场发展分析及前景趋势与投资研究报告
- 12S522 混凝土模块式排水检查井
- 人感染禽流感诊疗方案(2024年版)
- 居家养老服务报价明细表
- 食材配送服务方案投标方案(技术方案)
- 年产15000吨硫酸铝项目环评报告表
评论
0/150
提交评论