射线和物质的相互作用专题培训课件_第1页
射线和物质的相互作用专题培训课件_第2页
射线和物质的相互作用专题培训课件_第3页
射线和物质的相互作用专题培训课件_第4页
射线和物质的相互作用专题培训课件_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一.电离辐射的种类二.弹性碰撞和非弹性碰撞

三.带电粒子在物质中的慢化§5.1概述1

电离辐射:能量大于~10eV量级的射线。一.电离辐射的种类2

相互作用过程中,满足能量守恒:

E=0时,弹性碰撞;当

E0时,非弹性碰撞;

E>0时,与基态原子碰撞,原子被激发;

E<0时,与激发态原子碰撞。二.弹性碰撞和非弹性碰撞

带电粒子通过库仑力与物质发生相互作用。3从微观上看:碰撞机制:与原子、原子核碰撞;弹性、非弹性碰撞。碰撞后:入射粒子能量损失;或能量、方向改变后出射;或入射粒子消失,产生新粒子。从宏观上看:

不管作用机制如何,穿过物质的射线强度比入射强度减小。4

入射带电粒子所带电荷与原子中核外电子、原子核发生的库仑相互作用。

入射带电粒子在相互作用过程中逐渐慢化。

在入射带电粒子与电子的一次碰撞中,靶原子的电子获得的动能只占入射离子动能的很小的一部分。

质子入射时:三.带电粒子在物质中的慢化51、带电粒子与核外电子的非弹性碰撞核外电子获得能量,引起电离或激发。电离:产生自由电子、正离子,主要在最外层电子。激发:电子跃迁,原子处于激发态,退激发光。电离损失是带电粒子在物质中损失动能的主要方式。6当入射带电粒子与核外电子发生非弹性碰撞,以使靶物质原子电离或激发的方式而损失其能量,我们称它为电离损失。2、带电粒子与靶原子核的非弹性碰撞

入射带电粒子速度和方向发生变化,同时发射电磁辐射——韧致辐射。辐射损失是轻带电粒子损失动能的一种重要方式。当入射带电粒子与原子核发生非弹性碰撞时,以辐射光子损失其能量,我们称它为辐射损失。73、带电粒子与靶原子核的弹性散射

入射粒子不辐射光子,不激发原子核,方向偏转;入射粒子损失一部分动能,靶核得到反冲。

叫做核碰撞损失,核阻止;主要对低能重离子入射。4、带电粒子与核外电子的弹性散射

与电子的库仑作用,使入射粒子方向偏转;入射粒子损失一部分动能,但能量转移很小,电子能量状态不发生改变。100eV以下的粒子才需考虑。8一.重带电粒子在物质中的能量损失二.重带电粒子的射程§5.2重带电粒子与物质的相互作用

与核外电子的非弹性碰撞;与原子核的非弹性碰撞。9一.重带电粒子在物质中的能量损失1.能量损失率:入射带电粒子在物质中经过单位路程损失的能量。

有:电离损失率,辐射损失率。所以,也叫线性阻止本领。10Bethe公式(Betheformula)Bethe公式是描写电离能量损失率Sion与带电粒子速度v、电荷Z等关系的经典公式。公式推导的简化条件:

1.入射粒子与“自由电子”发生碰撞;(入射粒子的动能远大于电子的结合能)

2.入射粒子与“静止”电子发生碰撞;(入射粒子的速度远大于轨道电子的运动速度)

3.入射粒子的电荷态是确定的,碰撞后入射粒子仍按原方向

运动。(碰撞中入射粒子传给电子的能量比其自身能量小得多,

入射粒子方向几乎不变)11电子碰撞能量损失率的近似表达式为:其中:按量子理论推导出的公式(非相对论)也可以表示为只是:通过以上假设可以得到重带电粒子与单个电子的碰撞情况:12Bethe-Block公式:根据量子理论,并考虑了相对论修正

几点讨论:例如,1MeV的p与2MeV的d,z相同,v相同;S相同。1、S与入射粒子质量无关,只与电荷与速度有关。134、S与v2的关系2、S与入射粒子的电荷平方z2成正比例如,相同速度的p与

,S

=4Sp

。3、S与靶物质的电子密度NZ成正比

v2较大,对数项增大,S上升

;v2较小,S1/v2;

v2很小,电荷交换效应,俘获;

v2极小,核阻止作用。14二.重带电粒子的射程射程R:带电粒子在物质中沿初始入射方向行进的最大距离。路程:带电粒子在物质中实际经过的轨迹。

对重带电粒子,射程=路程;对轻带电粒子,射程<路程。射程歧离:由于带电粒子与物质的相互作用是一个随机过程,

因此单能粒子的射程也是有涨落的,称为射程歧离。

重带电粒子百分之几,轻带电粒子百分之十几。15把射程公式改写为:对重带电粒子,非相对论情况:16射程的实验测量:平均射程R;外推射程Re;最大射程Rmax。t17

粒子在标准状态空气中的射程,适用范围:3MeVE7MeV。在不同的物质中,与空气对比,可得

粒子在其他物质中的射程,其中,空气是由多种元素组成的混合物,对此:18例:210Po,放射源,E=5.3MeV,计算得到:R0=3.8cm。

在人体组织中,R=43m,R=4.3mg/cm2

;而人体皮肤的厚度R=7mg/cm2

在Al中,A=27,

=2.7,计算得到:R=23.4m。19

特点:§5.3β射线与物质的相互作用1、运动速度大;2、电离损失,辐射损失;3、碰撞中能量转移大,方向改变大(散射)。

快速电子:e

一.能量损失率二.吸收与射程三.电子的散射与反散射20快速电子的电离损失率由非弹性碰撞引起的电子能量损失的表达式为:一.能量损失率对快电子,必须考虑相对论效应时的电离能量损失和辐射能量损失。在高能时,考虑相对论效应,B的表达式为:快速电子在物质中穿透本领比重带电粒子大得多。在低能时,B的表达式为:21快速电子损失能量的方式:电离损失,辐射损失。根据经典电磁理论,当带电粒子接近原子核时,速度迅速降低,会发射出电磁波(光子),这种电磁辐射叫做韧致辐射。在单位路程上通过辐射损失的能量叫做辐射损失率:几点讨论:1、辐射损失率与入射粒子质量平方成反比,重带电粒子的辐射损失可以忽略不计;2、辐射损失率与靶物质NZ2成正比;3、辐射损失率与入射粒子能量E成正比。2.快速电子的辐射损失率:22快速电子总的能量损失:

入射电子能量高,辐射损失起主要作用;入射电子能量低,电离损失起主要作用。例如:靶物质Pb,Z=82,当Ee~9MeV,两者相当。23

快速电子在物质中有散射现象。大于90的散射叫做反散射。吸收:电子束通过一定厚度的物质时,强度减弱的现象。特点:电子的路程远大于射程;电子的射程有较大歧离。二.吸收与射程242、射线的吸收1、单能电子束的吸收(a)(c)253、射线在铝中的射程典型物质中

射线的射程:

Ge:R~E

max

,(mm,MeV)Al:R~2E

max

,(mm,MeV)Air:R~400E

max

,(cm,MeV)对比:4MeV

在空气中的射程约为2.5cm。当时,当时,26在吸收物质的厚度t比β粒子的射程R小很多时,β粒子在物质中的吸收,近似为:式中,

I0为没有吸收片时(t=0)的强度;I是吸收片厚度为t时的强度;μ为线性吸收系数,也称为线性衰减系数。如果使用质量厚度为单位,上式可以写成:称为质量吸收系数或质量衰减系数,单位为cm2/g;称为质量厚度,单位为g/cm2;ρ为吸收物质密度使β射线的强度减弱一半(即I/I0=1/2)的吸收厚度,称为半衰减层厚度或半吸收厚度记做d1/2。27三.电子的散射与反散射

电子与靶物质原子核库仑场作用时,只改变运动方向,而不辐射能量的过程称为弹性散射。由于电子质量小,因而散射的角度可以很大,而且会发生多次散射,最后偏离原来的运动方向,电子沿其入射方向发生大角度偏转,称为反散射。对同种材料,入射电子能量越低,反散射越严重;对同样能量的入射电子,原子序数越高的材料,反散射越严重。从实验数据中由以下结论:反散射的利用与避免1)对放射源而言,利用反散射可以提高β源的产额。给源加一个高Z厚衬底。2)对探测器而言,要避免反散射造成的测量偏差。使用低Z材料作探测器的入射窗和探测器。28小结:带电粒子与物质相互作用重带电粒子与物质的相互作用

作用特点:主要为电离能量损失单位路径上有多次作用——单位路径上会产生许多离子对每次碰撞损失能量少运动径迹近似为直线在所有材料中的射程均很短电子碰撞能量损失率的近似表达式为:29小结:带电粒子与物质相互作用β粒子与物质的相互作用

作用特点:电离能量损失和辐射能量损失单位路径上较少相互作用——单位路径上产生较少的离子对每次碰撞损失能量大路径不是直线,散射大电离能量损失率与辐射能量损失率的关系为:30§5.4

射线与物质的相互作用

光子不带电;

光子与电子或原子核存在电磁相互作用,在一次作用中损失全部能量或大部分能量。

射线是能量很高的电磁波,具有波粒二象性。

一.光电效应二.康普顿散射三.电子对效应四.射线的吸收31总截面光电效应截面康普顿效应截面电子对效应截面

射线与物质发生不同的相互作用都具有一定的概率,用截面这个物理量来表示作用概率的大小。而且,总截面等于各作用截面之和,即:特点:

光子是通过次级效应(一种“单次性”的随机事件)与物质的原子或原子核外电子作用,一旦光子与物质发生作用,光子或者消失或者受到散射而损失能量。次级效应主要的方式有三种,即光电效应、康普顿效应和电子对效应。

32光电效应特征:1、光电子动能等于光子能量与结合能之差:通常,所以,

射线(光子)与物质原子中束缚电子作用,把全部能量转移给某个束缚电子,使之发射出去(称为光电子photoelectron),而光子本身消失的过程,称为光电效应。一.光电效应33

从内壳层打出电子,原子处于激发态。2、自由电子不能发生光电效应。入射光子与内层电子发生光电效应的几率较大。3、光电效应伴随有特征x射线和Auger电子。原子退激过程:发出特征x射线,发出Auger电子。344、光电截面

ph入射光子与物质原子发生光电效应的截面称之为光电截面,理论上可给出的光电效应截面公式。在非相对论情况下,即时,K层的光电截面为:在非相对论情况下,即时,K层的光电截面为:(1)与吸收材料Z的关系:(2)与射线能量的关系:

散射光子,散射角

;反冲电子,反冲角

。与原子外层电子的散射,“自由电子”康普顿效应是射线(光子)与核外电子的非弹性碰撞过程。在作用过程中,入射光子的一部分能量转移给电子,使它脱离原子成为反冲电子,而光子受到散射,其运动方向和能量都发生变化,称为散射光子。二.Compton散射轨道电子速度远小于光速,“静止电子”。

散射光子还可继续发生Compton散射和光电效应。康普顿散射可近似为光子与自由电子发生相互作用(弹性碰撞)。康普顿效应主要发生在原子中结合的最松的外层电子上。361、散射光子和反冲电子的能量与角度的关系光子的能量:电子的动能:光子的动量:电子的动量:相对论关系:37由能量守恒由动量守恒可得到:散射光子能量:反冲电子能量:反冲角:382、几点讨论(1)散射光子和反冲电子的能量是连续的。

大,Ee大,h’小;

小,Ee小,h’大。(2)几种特殊情况:

=0,h’=h;表明:入射光子从电子旁边掠过,未受到散射,光子未发生变化。

=,h’=(h)’min;散射光子能量最小,而反冲电子能量最大(3)散射角与反冲角存在一一对

应的关系。39①.对整个原子的康普顿散射的总截面靶原子的原子序数Z大,康普顿散射截面大;入射粒子能量大,康普顿散射截面小。康普顿散射截面与入射光子能量的关系比光电效应要缓和。②.康普顿散射的微分截面表示散射光子落在某方向单位立体角内的概率。可由Klein-Nihsina公式给出:其中:,3、康普顿散射截面40电子对效应的特征:电子对效应是当入射射线(光子)能量较高(>1.022MeV)时,当它从原子核旁经过时,在核库仑场的作用下,入射光子转化为一个正电子和一个电子的过程。1、能量关系

从能量守恒:电子对效应发生的条件:电子动能范围:三.电子对效应412、电

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论