安徽省合肥市第二十三中学2022-2023学年高二数学文联考试卷含解析_第1页
安徽省合肥市第二十三中学2022-2023学年高二数学文联考试卷含解析_第2页
安徽省合肥市第二十三中学2022-2023学年高二数学文联考试卷含解析_第3页
安徽省合肥市第二十三中学2022-2023学年高二数学文联考试卷含解析_第4页
安徽省合肥市第二十三中学2022-2023学年高二数学文联考试卷含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省合肥市第二十三中学2022-2023学年高二数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在△ABC中,bcosA=acosB,则三角形的形状为()A.直角三角形 B.锐角三角形 C.等腰三角形 D.等边三角形参考答案:C考点: 正弦定理;余弦定理.

专题: 三角函数的求值.分析: 已知等式利用正弦定理化简,变形后利用两角和与差的正弦函数公式化简,得到A﹣B=0,即A=B,即可确定出三角形形状.解答: 解:利用正弦定理化简bcosA=acosB得:sinBcosA=sinAcosB,∴sinAcosB﹣cosAsinB=sin(A﹣B)=0,∴A﹣B=0,即A=B,则三角形形状为等腰三角形.故选:C.点评: 此题考查了正弦定理,两角和与差的正弦函数公式,以及等腰三角形的判定,熟练掌握定理及公式是解本题的关键.2.双曲线﹣=1的焦距为()A.3 B.4 C.3 D.4参考答案:D【考点】双曲线的简单性质.【分析】本题比较简明,需要注意的是容易将双曲线中三个量a,b,c的关系与椭圆混淆,而错选B【解答】解析:由双曲线方程得a2=10,b2=2,∴c2=12,于是,故选D.3.一个几何体的三视图如图所示,其中俯视图是菱形,则该几何体的侧面积为()A. B. C. D.参考答案:C【考点】由三视图求面积、体积.【分析】通过三视图判断几何体的特征,利用三视图的数据,求出几何体的侧面积即可.【解答】解:该几何体是高为1,底面对角线长为2的菱形构成的四棱锥A﹣BCDE,如图所示,在直角三角形ABE中,AB=1,BE=,∴AE=,在三角形AED中,AE=,ED=,AD=,∴AE2+DE2=AD2,∴三角形AED是直角三角形,则该几何体的侧面积为S=2×()+2×()=+,故选C.【点评】本题考查几何体的体积的求法,考查学生对三视图复原几何体的能力与计算能力.4.下列说法正确的是(

)(A)“”是“在上为增函数”的充要条件(B)命题“使得”的否定是:“”(C)“”是“”的必要不充分条件(D)命题“”,则是真命题参考答案:A略5.设,则的解集为(

)A.

B.

C.

D.参考答案:B6.直线与曲线相切,则切点的坐标为

.参考答案:

略7.设是等差数列,是其前项和,且,则下列结论错误的是

参考答案:C8.计算机执行右边的程序段后,输出的结果是(

)A.

B.

C.

D.

参考答案:B9.已知是抛物线的焦点,是该抛物线上的两点.若线段的中点到轴的距离为,则()A.2 B. C.3 D.4参考答案:C10.通过随机询问110名性别不同的大学生是否爱好体育,得到如下的列联表:

男女总计爱好402060不爱好203050总计6050110

由公式算得:K2=≈7.8.附表:P(K2≥k0)0.250.150.100.050.0250.0100.0050.001k0

1.3232.7022.7063.8415.0246.6357.87910.828参照附表,得到的正确结论是()A.有99%以上的把握认为“爱好体育运动与性别有关”B.有99%以上的把握认为“爱好体育运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好体育运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好体育运动与性别无关”参考答案:A,则有99%以上的把握认为“爱好该项运动与性别有关”.本题选择A选项.点睛:独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.二、填空题:本大题共7小题,每小题4分,共28分11.若P表示已知条件或已有的定义、公理或定理,Q表示所得到的结论,下列框图表示的证明方法是.参考答案:综合法【考点】综合法与分析法(选修).【分析】根据证题思路,是由因导果,是综合法的思路,故可得结论.【解答】解:∵P表示已知条件或已有的定义、公理或定理,Q表示所得到的结论,∴证明方法是由因导果,是综合法的思路故答案为:综合法12.某旅游公司年初以98万元购进一辆豪华旅游车,第一年各种费用为12万元,以后每年都增加4万元,该车每年的旅游效益为50万元,设第n年开始获利,列出关于n的不等关系.参考答案:98+12+(12+4)+(12+4×2)+…+[12+(n-1)×4]<50n13.在平行四边形ABCD中,AB=AC=1,∠ACD=90°,将它沿对角线AC折起,使AB与CD成60°角,则B、D之间的距离为.参考答案:2或【考点】点、线、面间的距离计算.【分析】先利用向量的加法将向量转化成,等式两边进行平方,求出向量的模即可.【解答】解:∵∠ACD=90°,∴=0.同理=0.∵AB和CD成60°角,∴<>=60°或120°.∵,∴=3+2×1×1×cos<>=∴||=2或,即B、D间的距离为2或.故答案为:2或.14.在区间[0,1]上随意选择两个实数x,y,则使≤1成立的概率为.参考答案:【考点】几何概型.【专题】概率与统计.【分析】由题意,即0≤x≤1且0≤y≤1,满足此条件的区域是边长为1的正方形,找出满足使≤1成立的区域,两部分的面积比为所求.【解答】解:由题意,即0≤x≤1且0≤y≤1,使≤1成立的即原点为圆心,以1为半径的个圆面,所以在区间[0,1]上随意选择两个实数x,y,则使≤1成立的概率为;故答案为:.【点评】本题考查了几何概型的概率求法;关键是找出满足条件的几何度量.15.设是定义在R上的偶函数,对任意,都有,且当时,.在区间(-2,6]内关于x的方程恰有3个不同的实数根,则实数a的取值范围是_____.参考答案:【分析】根据指数函数的图象可画出:当﹣6的图象.根据偶函数的对称性质画出[0,2]的图象,再根据周期性:对任意x∈R,都有f(x+4)=f(x),画出[2,6]的图象.画出函数y=loga(x+2)(a>1)的图象.利用在区间(﹣2,6]内关于x的f(x)﹣loga(x+2)=0(a>1)恰有3个不同的实数根,即可得出.【详解】如图所示,当﹣6,可得图象.根据偶函数的对称性质画出[0,2]的图象,再据周期性:对任意x∈R,都有f(x+4)=f(x),画出[2,6]的图象.画出函数y=loga(x+2)(a>1)的图象.∵在区间(﹣2,6]内关于x的f(x)﹣loga(x+2)=0(a>1)恰有3个不同的实数根,∴loga8>3,loga4<3,∴4<a3<8,解得<a<2.故答案为:【点睛】本题考查了指数函数图象与性质、函数的奇偶性、周期性,考查了方程的实数根转化为函数图象的交点个数,考查了数形结合的思想方法,考查了推理能力与计算能力,属于难题.

16.已知两个正数,可按规则扩充得到一个新数,在桑格数中取较大的数,按上述规则扩充得到一个新书,一次进行下去,将每次扩充一次得到一个新数,称为一次操作,若,按实数规则操作三次,扩充所得的数是

参考答案:25517.平面上若一个三角形的周长为L,其内切圆的半径为R,则该三角形的面积S=,类比到空间,若一个四面体的表面积为S,其内切球的半径为R,则该四面体的体积V=▲.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知在等比数列{an}中,.(1)求数列{an}的通项公式;(2)设,求数列{bn}的前n项和Tn.参考答案:(1)(2)【分析】(1)求出公比后可得的通项公式.(2)利用错位相减法可求.【详解】(1)设等比数列的公比为.由,得,得,所以,解得.故数列的通项公式是.(2),则,①,②由①-②,得,,故【点睛】数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法.19.若复数,,且为纯虚数,求参考答案:13【分析】由复数为纯虚数,求得,得到,进而求得,即可求解,得到答案.【详解】由题意,复数为纯虚数,则,解得,所以,又,所以,所以【点睛】本题主要考查了复数的分类,以及复数的运算其中解答中熟记复数的分类,以及复数的运算法则是解答的关键,着重考查了推理与运算能力,属于基础题.20.在数列

(1)求证:数列是等比数列.

(2)求数列参考答案:解析:(I)令,

(2)由(1)可知

…………9分

所以

…………12分21.(本小题满分12分)如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点分别为和.(Ⅰ)求椭圆和双曲线的标准方程(Ⅱ)设直线、的斜率分别为、,证明;(Ⅲ)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.参考答案:(1)椭圆的标准方程为,双曲线的标准方程为(3)(Ⅱ)设点P(,),则=,=,所以=,又点P(,)在双曲线上,所以有,即,所以=1。(Ⅲ)假设存在常数,使得恒成立,则由(Ⅱ)知,所以设直线AB的方程为,则直线CD的方程为,由方程组消y得:,设,,则由韦达定理得:所以|AB|==,同理可得|CD|===,又因为,所以有=+=,所以存在常数,使得恒成立。略22.(本小题14分)如图,已知分别是椭圆的左、右焦点,过与轴垂直的直线交椭圆于点,且(1)求椭圆的标准方程(2)已知点,问是否存在直线与椭圆交于不同的两点,且的垂直平分线恰好过点?若存在,求出直线斜率的取值范围;若不存在,请说明理由.参考答案:(1)连接,在中,,由椭圆定义可知,,又,从而,椭圆的标准方程为(2)由题意可知,若的垂直平分线恰好过点,则有,当与轴垂直时,不满足;当与轴不垂直时,设的方程为,由,消得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论