版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省福州市天和高级职业中学高二数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.一块橡胶泥表示的几何体的三视图如图所示,将该橡胶泥揉成一个底面边长为8的正三角形的三棱锥,则这个三棱锥的高为(
)A.3 B.6 C.9 D.18参考答案:D2.某班有48名学生,在一次考试中统计出平均分为70分,方差为75,后来发现有2名同学的分数登错了,甲实得80分却记成了50分,乙实得70分却记成了100分,则更正后平均分和方差分别是()A.70,50
B.70,75
C.70,72.5
D.65,70参考答案:A3.现有五个球分别记为A,B,C,D,E,随机放进三个盒子,每个盒子只能放一个球,则D或E不在盒中的概率是(
)A.
B.
C.
D.参考答案:C4.在送医下乡活动中,某医院安排甲、乙、丙、丁、戊五名医生到3所乡医院工作,每所医院至少安排一名医生,且甲、乙两名医生不安排在同一医院,丙、丁两名医生也不安排在同一医院,则不同的分配方法总数为()A.36 B.72 C.84 D.108参考答案:C【考点】排列、组合及简单计数问题.【分析】五名医生到3所乡医院工作,每所医院至少安排一名医生,名医生可以分为(2,2,1)和(3,1,1)两种分法,根据分类计数原理可得【解答】解:①当有二所医院分2人另一所医院分1人时,总数有:=90种,其中有、甲乙二人或丙丁二人在同一组有+4=30种;故不同的分配方法是90﹣30=60种②有二所医院分1人另一所医院分3人.有=24种.根据分类计数原理得,故不同的分配方法总数60+24=84.故选:C5.△ABC的内角A,B,C所对的边分别为a,b,c,若角A,B,C依次成等差数列,且则△ABC的面积S= ().A.
B.
C.
D.2参考答案:C6.已知集合A={x||x|≤2,x∈R},B={x|≤2,x∈Z},则A∩B=()A.(0,2) B.[0,2] C.{0,2} D.{0,1,2}参考答案:D【考点】1E:交集及其运算.【分析】分别求出两集合中其他不等式的解集,确定出两集合,然后求出两集合的交集即可.【解答】解:由集合A中的不等式|x|≤2,解得:﹣2≤x≤2,所以集合A=[﹣2,2],由集合B中的不等式≤2,解得:0≤x≤4,又x∈Z,所以集合B={0,1,2,3,4},则A∩B={0,1,2}.故选D7.直线与圆相交于两点,则等于A.
B.
C.
D.
参考答案:D8.如图所示,程序框图(算法流程图)的输出结果是()A.3 B.4 C.5 D.8参考答案:B【考点】循环结构.【分析】列出循环中x,y的对应关系,不满足判断框结束循环,推出结果.【解答】解:由题意循环中x,y的对应关系如图:x1248y1234当x=8时不满足循环条件,退出循环,输出y=4.故选B.9.在空间直角坐标系中,点关于平面对称的点为,则,两点间的距离为(
)A.
B.
C.4
D.2参考答案:D10.在△ABC中,a=15,b=10,A=60°,则cosB=()A.﹣ B. C.﹣ D.参考答案:D【考点】正弦定理.【分析】根据正弦定理先求出sinB的值,再由三角形的边角关系确定∠B的范围,进而利用sin2B+cos2B=1求解.【解答】解:根据正弦定理可得,,解得,又∵b<a,∴B<A,故B为锐角,∴,故选D.【点评】正弦定理可把边的关系转化为角的关系,进一步可以利用三角函数的变换,注意利用三角形的边角关系确定所求角的范围.二、填空题:本大题共7小题,每小题4分,共28分11.等比数列中,若,,则的值为
▲
.参考答案:12.甲、乙两名选手进行围棋比赛,甲选手获胜的概率为,乙选手获胜的概率为,有如下两种方案,方案一:三局两胜;方案二:五局三胜.对于乙选手,获胜概率最大的是方案_________.参考答案:方案一略13.若命题“存在,使得成立”为假命题,则实数的取值范围是________
参考答案:.
14.底面边长为2m,高为1m的正三棱锥的全面积为m2.参考答案:【考点】棱柱、棱锥、棱台的侧面积和表面积.【分析】由已知中正三棱锥的底面边长为2m,高为1m,我们易出求棱锥的侧高,进而求出棱侧面积和底面面积即可求出棱锥的全面积.【解答】解:如图所示,正三棱锥S﹣ABC,O为顶点S在底面BCD内的射影,则O为正△ABC的垂心,过C作CH⊥AB于H,连接SH.则SO⊥HC,且,在Rt△SHO中,.于是,,.所以.故答案为15.在梯形ABCD中,AB⊥BC,AD∥BC,BC=2AD=2AB=4,将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为
.参考答案:【考点】棱柱、棱锥、棱台的体积.【专题】作图题;运动思想;等体积法;空间位置关系与距离.【分析】画出几何体的直观图,利用已知条件,求解几何体的体积即可得到答案.【解答】解:由题意可知几何体的直观图如图:旋转体是底面半径为2,高为4的圆柱,挖去一个相同底面高为2的倒圆锥,几何体的体积为:=.故答案为:.【点评】本题考查几何体的体积的求法,考查空间想象能力以及计算能力.画出几何体的直观图是解题的关键,是中档题.16.设,则a的取值范围是
。参考答案:a>317.若钝角三角形的三边长是公差为1的等差数列,则最短边的取值范围是___________.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在直角坐标系xoy中,直线l的参数方程为(t为参数),若以直角坐标系xoy的O点为极点,Ox为极轴,且长度单位相同,建立极坐标系,得曲线C的极坐标方程为ρ=2cos(θ﹣).直线l与曲线C交于A,B两点,求|AB|.参考答案:【考点】QJ:直线的参数方程;Q4:简单曲线的极坐标方程.【分析】利用直角坐标与极坐标间的关系:ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得曲线C的极坐标方程为ρ=2cos(θ﹣)的直角坐标方程,曲线C表示以(,)为圆心,以R=1为半径的圆,最后利用直线和圆的相交关系中弦长公式求解即可.【解答】解:l的直角坐标方程为y=+,ρ=2cos(θ﹣)的直角坐标方程为(x﹣)2+(y﹣)2=1,所以圆心(,)到直线l的距离d==,∴|AB|=2=2=.…(10分)【点评】本题考查了极坐标、直角坐标方程及参数方程的互化,圆中弦长计算方法等.属于基础题.19.设函数f(x)=2cos2x+sin2x+a(a∈R).(1)求函数f(x)的最小正周期;(2)当x∈[0,]时,f(x)的最大值为2,求a的值。参考答案:略20.(本小题满分12分)在1,2,3,…,9这9个自然数中,任取3个数.(1)
求这3个数中恰有1个偶数的概率;(2)
记X为这3个数中两数相邻的组数,例如:若取出的数为1、2、3,则有两组相邻的数1、2和2、3,此时X的值为2.求随机变量X的颁布列及其数学期望EX.
参考答案:解:(1)设Y表示“任取的3个数中偶数的个数”,则Y服从参数N=9,M=4,n=3的超几何分布,所以所求概率为:
……6分(2)X的可能取值为0,1,2.所以X的分布列X012P
…….10分数学期望
…………12分略21.在△ABC中,角A、B、C的对边分别为a、b、c,且满足.(1)求角C的大小;(2)若求△ABC的面积.参考答案:(1)在中,,即————(1分)由正弦定理得————(2分),(3分)即(4分)又因为在中,,所以,即所以————(6分)(2)在中,,所以解得或(舍去),————(9分)所以————(12分)22.已知函数.(1)当,求函数的单调区间;(2)证明:当时,.参考答案:(1)函数的单调递减区间是,,单调递增区间是(2)见解析分析:(1)把代入,取导函数,因而判断导数的符号即可判断单调区间。(2)将函数变形,构造函数,求导函数。构造函数,则,根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 董事长公司开业庆典致辞
- 校秋季运动会广播稿(33篇)
- 电工2024年工作总结范文(五篇)
- 工伤事故调解协议书(3篇)
- 小学语文阅读理解16个常考题型和答题技巧
- 第5章-车辆人机学课件
- 工程设计收集资料清单
- 计件工资实施方案(试行)
- 厂级职工安全培训试题答案研优卷
- 员工三级安全培训试题【模拟题】
- 脑出血护理个案
- 《江西省普通高级中学基本办学条件标准(试行)》
- 甲醇锅炉资料
- 二氧化钛实验报告
- 英语特殊疑问句练习题(附答案)
- 历史学科课堂观察量表
- 重大危险源安全监理巡视检查记录表(共13页)
- 国家开放大学《计算机绘图(本)》章节测试参考答案
- 成都市全域地籍数据建库及宗地统一编码技术方案(全市招标稿)
- DB45∕T 2364-2021 公路路基监测技术规范
- 压力容器设计-密封装置设计ppt课件
评论
0/150
提交评论