山西省吕梁市交城县职业中学高三数学文下学期摸底试题含解析_第1页
山西省吕梁市交城县职业中学高三数学文下学期摸底试题含解析_第2页
山西省吕梁市交城县职业中学高三数学文下学期摸底试题含解析_第3页
山西省吕梁市交城县职业中学高三数学文下学期摸底试题含解析_第4页
山西省吕梁市交城县职业中学高三数学文下学期摸底试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省吕梁市交城县职业中学高三数学文下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图所示的程序框图,若输入a=2.,b=4,那么a的输出值为(

)A.16log32

B.64

C.164

D.4log32参考答案:C2.已知向量,,则是的(

)条件

A.充分不必要

B.必要不充分

C.充要

D.既不充分也不必要参考答案:B因为向量中有可能为零向量,所以时,推不出。若,所以,所以是的必要不充分条件.3.方程的解所在的区间为(

)A.(0.5,1) B.(1,1.5) C.(1.5,2) D.(2,2.5)参考答案:B【分析】令,由函数单调递增及即可得解.【详解】令,易知此函数为增函数,由.所以在上有唯一零点,即方程的解所在的区间为.故选B.【点睛】本题主要考查了函数的零点和方程根的转化,考查了零点存在性定理的应用,属于基础题.4.设集合,,则(

A.

B.

C.

D.

参考答案:、A略5.若向量=(1,﹣2),=(2,1),=(﹣4,﹣2),则下列说法中正确的个数是()①⊥;②向量与向量的夹角为90°;③对同一平面内的任意向量,都存在一对实数k1,k2,使得=k1+k2.A.3 B.2 C.1 D.0参考答案:B【考点】向量在几何中的应用.【分析】运用向量垂直的条件:数量积为0,计算即可判断①②;由向量共线定理,可得,共线,由平面向量基本定理,即可判断③.【解答】解:向量=(1,﹣2),=(2,1),=(﹣4,﹣2),由?=1×2+(﹣2)×1=0,可得⊥,故①正确;由?=1×(﹣4)+(﹣2)×(﹣2)=0,可得⊥,故②正确;由=﹣2可得,共线,由平面向量基本定理,可得对同一平面内的任意向量,不都存在一对实数k1,k2,使得=k1+k2.故③错误.综上可得,正确的个数为2.故选:B.【点评】本题考查向量的数量积的性质,主要是向量垂直的条件:数量积为0,考查平面向量基本定理的运用以及向量共线的坐标表示,考查运算能力,属于基础题.6.已知直线与圆交于两点,且(其中为坐标原点),则实数的值为(

) A.

B.

C.或 D.或参考答案:C略7.已知集合A={x|ax=1},B={0,1},若A?B,则由a的取值构成的集合为(

)A.{1} B.{0} C.{0,1} D.?参考答案:C【考点】集合的包含关系判断及应用.【专题】集合.【分析】当a=0时,集合A={x|ax=1}=?,满足A?B,当a≠0时,集合A={x|ax=1}={},则=0,或=1,解对应方程后,综合讨论结果,可得答案.【解答】解:当a=0时,集合A={x|ax=1}=?,满足A?B;当a≠0时,集合A={x|ax=1}={},由A?B,B={0,1}得:=0,或=1,=0无解,解=1得:a=1,综上由a的取值构成的集合为{0,1}故选:C.【点评】本题考查的知识点是集合的包谷关系判断及应用,其中易忽略a=0时,集合A={x|ax=1}=?,满足A?B,而错选A.8.设i是虚数单位,则复数(1?i)?等于(

)A.0

B.2

C.4i

D.?4i参考答案:D略9.设全集U=R,集合,,则集合AB=A.

B.

C.

D.参考答案:C10.设函数f(x)=x2+ax+b(a,b∈R)的两个零点为x1,x2,若|x1|+|x2|≤2,则()A.|a|≥1 B.b≤1 C.|a+2b|≥2 D.|a+2b|≤2参考答案:B【分析】利用绝对值不等式,及a2﹣4b≥0,即可得出结论.【解答】解:由题意,|x1+x2|≤|x1|+|x2|≤2,∴|﹣a|≤2∵a2﹣4b≥0,∴4b≤a2≤4,∴b≤1,故选B.【点评】本题考查函数的零点,考查二次函数的性质,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分11.已知关于的方程有两个不等的负实数根;关于的方程的两个实数根,分别在区间与内(1)若是真命题,则实数的取值范围为____________.(2)若是真命题,则实数的取值范围为____________.参考答案:略12.函数参考答案: 13.以为渐近线且经过点的双曲线方程为______.参考答案:因为双曲线经过点,所以双曲线的焦点在轴,且,又双曲线的渐近线为,所以双曲线为等轴双曲线,即,所以双曲线的方程为。14.已知定义在上的偶函数满足:,且当时,单调递减,给出以下四个命题:①;②为函数图像的一条对称轴;③函数在单调递增;④若关于的方程在上的两根,则.以上命题中所有正确的命题的序号为_______________.参考答案:①②④15.已知圆x2+y2+2x﹣2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值为

.参考答案:﹣4考点:直线与圆的位置关系.专题:直线与圆.分析:把圆的方程化为标准形式,求出弦心距,再由条件根据弦长公式求得a的值.解答: 解:圆x2+y2+2x﹣2y+a=0即(x+1)2+(y﹣1)2=2﹣a,故弦心距d=.再由弦长公式可得2﹣a=2+4,∴a=﹣4;故答案为:﹣4.点评:本题主要考查直线和圆的位置关系,点到直线的距离公式,弦长公式的应用,属于基础题.16.+log3+log3=________.

参考答案:17.己知函数满足,且当时,,若函数在区间上有个零点,则实数的取值范围是

.参考答案:因为,所以函数得周期为,则当时,,由函数在区间上有个零点,知函数与的图象有个交点,在区间内,函数与的图象有个交点,则在区间内,当函数与相切时,方程有一个实数根,即方程有一个实数根,所以,解得,结合图象得.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某中学为了解学生“掷实心球”项目的整体情况,随机抽取男、女生各20名进行测试,记录的数据如下:男生投掷距离(单位:米) 女生投掷距离(单位:米)9

7

7 5 4

68

7

6 6 4556669

6

6 7 002445555885530 8 17

3

11 9

2

20 10 已知该项目评分标准为:男生投掷距离(米) (t>0)上的最小值;(3)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围.参考答案:考点:利用导数求闭区间上函数的最值;函数恒成立问题;利用导数研究函数的极值.专题:导数的综合应用.分析:(1)利用1是h(x)的极值点,可得h′(1)=﹣2+a+3a=0,解得a.再验证a的值是否满足h(x)取得的极值的条件即可.(2)利用导数的运算法则即可得到f′(x),分与讨论,利用单调性即可得f(x)的最小值;(3)由2xlnx≥﹣x2+ax﹣3,则a,设h(x)=(x>0).对一切x∈(0,+∞),2f(x)≥g(x)恒成立?a≤h(x)min,利用导数求出h(x)的最小值即可.解答: 解:(1)∵h(x)=﹣x2+ax﹣3+ax3,∴h′(x)=﹣2x+a+3ax2,∵1是h(x)的极值点,∴h′(1)=﹣2+a+3a=0,解得a=.经验证满足h(x)取得的极值的条件.(2)∵f(x)=xlnx,∴f′(x)=lnx+1,令f′(x)=0,解得.当时,f′(x)<0,f(x)单调递减;当x时,f′(x)>0,f(x)单调递增.①无解;②,即,.③,即时,f(x)在上单调递增,f(x)min=f(t)=tlnt;∴f(x)min=.(3)2xlnx≥﹣x2+ax﹣3,则a,设h(x)=(x>0),则,令h′(x)<0,解得0<x<1,∴h(x)在(0,1)上单调递减;令h′(x)>0,解得1<x,∴h(x)在(1,+∞)上单调递增,∴h(x)在x=1时取得极小值,也即最小值.∴h(x)≥h(1)=4.∵对一切x∈(0,+∞),2f(x)≥g(x)恒成立,∴a≤h(x)min=4.点评:本题综合考查了利用导数研究函数的单调性、极值与最值、等价转化为等基础知识于基本技能,需要较强的推理能力和计算能力.19.(本题满分14分,第1小题满分7分,第2小题满分7分)如图所示,圆锥SO的底面圆半径,其侧面展开图是一个圆心角为的扇形.(1)求此圆锥的表面积;(2)求此圆锥的体积.

参考答案:(1)因为,所以底面圆周长为,……………1分所以底面圆的面积为,…………2分所以弧长为,…3分又因为,则有,所以.…………4分扇形ASB的面积为所以圆锥的表面积=…………7分(2)在中,.,…10分所以圆锥的体积.…14分

20.(本小题满分14分)已知函数,,其中a>1.(I)求函数的单调区间;(II)若曲线在点处的切线与曲线在点处的切线平行,证明;(III)证明当时,存在直线l,使l是曲线的切线,也是曲线的切线.参考答案:本小题主要考查导数的运算、导数的几何意义、运用导数研究指数函数与对数函数的性质等基础知识和方法.考查函数与方程思想、化归思想.考查抽象概括能力、综合分析问题和解决问题的能力.满分14分.(I)解:由已知,,有.令,解得x=0.由a>1,可知当x变化时,,的变化情况如下表:x00+极小值所以函数的单调递减区间,单调递增区间为.(II)证明:由,可得曲线在点处的切线斜率为.由,可得曲线在点处的切线斜率为.因为这两条切线平行,故有,即.两边取以a为底的对数,得,所以.(III)证明:曲线在点处的切线l1:.曲线在点处的切线l2:.要证明当时,存在直线l,使l是曲线的切线,也是曲线的切线,只需证明当时,存在,,使得l1和l2重合.即只需证明当时,方程组有解,由①得,代入②,得.

③因此,只需证明当时,关于x1的方程③有实数解.设函数,即要证明当时,函数存在零点.,可知时,;时,单调递减,又,,故存在唯一的x0,且x0>0,使得,即.由此可得在上单调递增,在上单调递减.在处取得极大值.因为,故,所以.下面证明存在实数t,使得.由(I)可得,当时,有,所以存在实数t,使得因此,当时,存在,使得.所以,当时,存在直线l,使l是曲线的切线,也是曲线的切线.

21.(本小题满分13分)已知函数(,为自然对数的底数).(1)求函数的最小值;(2)若≥0对任意的恒成立,求实数的值;(3)在(2)的条件下,证明:参考答案:(1)由题意,由得. 当时,;当时,. ∴在单调递减,在单调递增. 即在处取得极小值,且为最小值, 其最小值为………………5分 (2)对任意的恒成立,即在上,. 由(1),设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论