DSP中电源噪声问题_第1页
DSP中电源噪声问题_第2页
DSP中电源噪声问题_第3页
DSP中电源噪声问题_第4页
DSP中电源噪声问题_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

DSP中电源噪声问题具有较高时钟率和速度的高速DSP系统设计正在变得日益复杂。结果,增加了噪声源数。现在,高端DSP的时钟率(1GHz)和速度(500MHZ)产生可观的谐波,这些是由于PCB线迹的作用如同天线所致。由此引起的噪声使音频、视频、图像和通信功能降低并对达到FCC/CE商标认证造成问题。为了降低电源噪声,对于高速DSP系统设计人员来讲,识别和找出可能的噪声原因以及采用良好的高速设计实践是关键。本文说明交扰、锁相环(PLL)、去耦/体电容器在降低噪声中的重要性。降低交扰交扰是一个重要的噪声源。在高速系统中,信号地通路依赖于工作频率。对于低速信号(<10MHZ),电流经过最小电阻地通路(最短通路)返回到源。在10MHz以上,情况就不同。经电流最小电感地通路返回。重要的是返回信号以电流分布传播(图1),这意味着相邻信号的返回通路可能容易重叠,导致交扰。信号战迹图1加倍线迹可使交插最小降低交扰的技术有:线迹间距加大,增加地线,降低谐波分量和线迹端接技术。在高速DSP系统中,加倍信号间的线迹间距,可降低环路重叠,使交扰降低4倍。对于差分信号(Earthnet或USB),建议间距所产生的信号对应具有所需的匹配阻抗。另外,关键信号(即时钟)应屏蔽,路由信号在电源和地平板之间的内层,或把一个地平板放置在关键信号下面层上。在再制板上加信号线时,应包括一个并联地线。这可能提供高速电流返回通路并在电流环路中产生最小面积。这个附加的通路,确保返回电流不产生大的环路和拾取噪声。在降低交扰时,评价快速沿所引起的谐波和干扰是重要的。例如,在线迹上增加串联终端电阻器,会使上升时间(Tr)减慢,这是有效地降低谐波分量的方法。噪声幅度曲线在低频能较好地衰减谐波分量(图2)。线迹可做为传输线(在上升时间Tr小于2倍传播延迟时)。因此,应保持线迹尽可能的短。若线迹的长度足以做为传输线,则用串联终端(电阻器与输出驱动器串联)或并联终端(在负载处电阻器到地)接线。若电阻器与所用线迹PCB阻抗匹配,则可以降低传输线反射和瞬变。锁相环锁相环(PLL)是另一个重要的噪声源。在某些DSP中正日益采用模拟和数字版本PLL(图3)。隔离到PLL电源时,用n形滤波器去除高频噪声是有效的。但它对去除低噪声作用不大,需要用多级滤波器网络。然而,在快速开关电路中,一个低压降(LDO)稳压器是更适合的,因为这种器件在低频具有高电源抑制比(PSRR)。若设计的系统运行在噪声环境(如汽车、电/机装置),具有较大的低频瞬变,则应选择高PSRR稳压器。口十打。卜TOPLL口十打。卜TOPLL RMp 图3模拟和数字PLL舞M风/irf分离模拟和数字地对于隔离来自模拟部分的数字噪声有帮助。对于低速电路这样做也是良好的。然而,对于高速电路(例如视频部分)应避免分离地。快速开关电流需用最小的电流环路,而隔离地阻止来自选择通路的电流。因此,将选择另外通路到源,这最终导致势差、电流流和辐射。在数字数据进入点把模拟和数字地短接在一起,可提供一个直接通路而不影响低频信号。信号朝实际的最短返回路径到源,而不是短路的通路。电容器应用适当地应用电容器是降低噪声的有效方法。去耦电容器提供一个低阻抗到地通路来旁路不希望的高频能量。可以用体电容器来旁路低频到地,以及用去耦电容器提供本地电荷存储。对于去耦电容器没有最好的值,这是因为反作用影响。通常,电容器阻抗随频率和电容降低。当信号频率超过谐振频率时,电容器变成电感而不再是一个有效的滤波器。尽管低阻抗和更多电荷存储能降低下降,但对于高频信号,高值电容器不是最佳的。理想地,在电源地应包含一个高值和一个较低值电容器。若不能实现,用一个0.01碉电容器是一个可接受的折衷方案。应该用较对大的体电容器,至少10倍于总去耦电容器。例如,在100KHZ,100碉电解电容具有0.6Q左右的等效串联电阻(ESR),同样值的钽电容具有0.12Q左右的ESR,这使得钽电容更适合体电容器。对于去耦陶瓷电容优于聚酯电容器。例如,在1MHZ,0.1碉陶瓷电容器具有0.12Q左右的ESR,而1.0碉聚酯电容器具有0.11Q的ESR。去耦电容器应放置在PCB底端靠近器件引脚处。对于高速DSP,去耦电容器应放置在每个电源引脚处。若空间不允许这样做,也应尽可能地放置在器件周围。复杂DSP去耦的一种有效方法是从对角划两个虚线构成一个X(图4)。然后独立分析4个区域的每个区域。为使得体电容器靠近去耦电容器,把它们放置在板的顶端。这种定位使线踪最短,同时可降低辐射和寄生电感。以TI公司的OMAP5910DSP为例,特别注意包含数字PLL和外部存储器接口的区域(图4中左边区域)。该器件有13个芯核电压引脚,峰值芯核电流耗电170mA(平均每个引脚13mA)。在该区域的3个芯核电压引脚包括数字PLL和外部存储器接口,耗电39皿八。为了保证精度,在确定电容器大小时,增加100%容限(即78mA)是合适的。必须消除峰值I/O电流。应采用谨慎的方法,假定在此区域所有54个I/O线同时开关4mA,这将导致216mA通过此区域的8个I/O电压引脚。W.wwii0.01Ifr.KWIIHl图4OMAP591CDSP专容值W.wwii0.01Ifr.KWIIHl图4OMAP591CDSP专容值OPj]10.011M同0Q0O471LWiJ随着芯核和I/O电压工作不同频率,必须用合适大小的电容器去耦电源。在此实例中,用下面的公式计算,计算的芯核电容为0.0078碉,对于216mAI/O电流所需电容为0.22碉:C=I(dv/dt)其中I为峰值电流,dv为最大所允许的纹波电压(假定10mV),dt为上升时间(假定1ns,OMAP5910典型值)。所以,芯核电容C=78mAx(1ns/10mv)=0.0078碉在OMAP5910BGA封装中,对于每个区域的4个电容器都有足够的空间,没有一个是用于每个芯核电源引脚的。因此,为了去耦芯核电压引脚,最好选择两个电容器,其总值为0.0078碉(配置两个0.0047碉陶瓷电容器,以使从引脚到地有最短距离)。必须考虑开关频率。芯核部分在150MHz开关转换,而8个I/O引脚在75MHz开关转换。可以用另外两个电容器位置来去耦I/O电压引脚(即用两个自谐波振频率75MHz以上的0.01碉陶瓷电容器提供0.022碉)。体电容器值在此实例中,DSP总芯核电压电流为338mA。用上面的公式计算电容为0.0338碉。做为体电容应该是10倍去耦电容值,大约为0.39碉。对于I/O电压,进行同样的处理,得至1」0.84碉电容,给出总电容1.23碉

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论