液压与气动基础知识课件_第1页
液压与气动基础知识课件_第2页
液压与气动基础知识课件_第3页
液压与气动基础知识课件_第4页
液压与气动基础知识课件_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二章液压与气压传动的基础知识

静止液体的力学规律流动液体的力学规律管路系统流动分析液压系统的气穴与液压冲击现象.第二章液压与气压传动的基础知识静止液体的力学规律.12.1静止液体的力学规律液体的静压力静压力基本方程静压力基本方程的物理意义压力的计量单位压力的传递液体静压力对固体壁面的作用力.2.1静止液体的力学规律液体的静压力.22.1.1液体的静压力静压力:是指液体处于静止状态时,其单位面积上所受的法向作用力若包含液体某点的微小面积ΔA上所作用的法向力为ΔF,则该点的静压力p定义为:若法向力F均匀地作用在面积A上,则压力可表示为:.2.1.1液体的静压力静压力:是指液体处于静止状态时,32.1.1液体的静压力静压力的特性:液体的静压力的方向总是沿着作用面的内法线方向静止液体中任何一点所受到各个方向的压力都相等.2.1.1液体的静压力静压力的特性:.42.1.2液体静压力的基本方程液体静压力基本方程:反映了在重力作用下静止液体中的压力分布规律p=po+ρghp是静止液体中深度为h处的任意点上的压力,p0为液面上的压力,若液面为与大气接触的表面,则p0等于大气压p。同一容器同一液体中的静压力随着深度h的增加线性地增加同一液体中深度h相同的各点压力都相等.在重力作用下静止液体中的等压面是深度(与液面的距离)相同的水平面

图2—1重心作用下的静止液体.2.1.2液体静压力的基本方程液体静压力基本方程:反映了52.1.3静压力基本方程物理意义p=p0+ρg(z0-z)

+z=+z0=C

Z:单位重量液体的位能,称位置水头:单位重量液体的压力能,称压力水头物理意义:静止液体具有两种能量形式,即压力能与位能。这两种能量形式可以相互转换,但其总和对液体中的每一点都保持不变为恒值,因此静压力基本方程从本质上反映了静止液体中的能量守恒关系..2.1.3静压力基本方程物理意义p=p0+ρg(z0-62.1.4压力的计量单位法定单位:牛顿/米2(N/m2)即帕(Pa)

1MPa=106Pa单位换算:1工程大气压(at)=1公斤力/厘米2(kgf/m2)≈105帕

=0.1MPa1米水柱(mH20)=9.8×103Pa1毫米汞柱(mmHg)=1.33×102Pa

.2.1.4压力的计量单位法定单位:牛顿/米2(N/m272.1.4压力的计量单位相对压力(表压力):以大气压力为基准,测量所得的压力是高于大气压的部分

绝对压力:以绝对零压为基准测得的压力绝对压力=相对压力+大气压力真空度:如果液体中某点的绝对压力小于大气压力,则称该点出现真空。此时相对压力为负值,常将这一负相对压力的绝对值称为该点的真空度

真空度=|负的相对压力|=|绝对压力-大气压力|图2—2绝对压力、相对压力和真空度.2.1.4压力的计量单位相对压力(表压力):图2—282.1.5压力的传递帕斯卡原理:若在处于密封容器中静止液体的部分边界面上施加外力使其压力发生变化,只要液体仍保持其原来的静止状态不变,则液体中任一点的压力均将发生同样大小的变化液压传动是依据帕斯卡原理实现力的传递、放大和方向变换的液压系统的压力完全决定于外负载图2-4帕斯卡原理应用.2.1.5压力的传递帕斯卡原理:若在处于密封容器中静止液体92.1.6液体静压力对固体壁面的作用力当承受压力的固体壁面为平面时:则作用在其上的总作用力等于压力与该壁面面积之积

如果承受压力的固体壁面是曲面时:曲面上总作用力在某一方向上的分力等于曲面在与该方向垂直平面内的投影面积与静压力的乘积。若已知曲面上总作用力在三个坐标轴方向的分量分别为Fx、Fy和Fz时,总作用力的大小为:.2.1.6液体静压力对固体壁面的作用力当承受压力的固体壁面102.2流动液体的力学规律基本概念连续性方程伯努利方程.2.2流动液体的力学规律基本概念.112.2.1基本概念理想液体:既不可压缩又无粘性的液体理想气体:可压缩但没有粘性的气体一维定常流动:即流场中速度与压力只是空间点的位置的函数而与时间无关,则称流场中的流动为定常流动。在定常流动条件下,如果通过适当选择坐标(包括曲线坐标)后,使流速与压力只是一个坐标的函数,则称这样的流动为一维定常流动.2.2.1基本概念理想液体:既不可压缩又无粘性的液体.122.2.1基本概念通流截面:在流场中作一面。若该面与通过面上的每一条流线都垂直,则称该面为通流截面

流量:单位时间内流过某通流截面的流体体积

法定单位:

米3/秒(m3/s)工程中常用升/分(L/min)通流截面上的平均流速:图2—7流线、流束与通流截面.2.2.1基本概念通流截面:在流场中作一面。若该面与通过132.2.1基本概念流动液体中的压力和能量:由于存在运动,所以理想流体流动时除了具有压力能与位能外,还具有动能。即流动理想流体具有压力能,位能和动能三种能量形式单位重量的压力能:单位重量的位能:Z单位重量的动能:.2.2.1基本概念流动液体中的压力和能量:由于存在运动142.2.2连续性方程:质量守恒定律在流动液体情况下的具体应用q=

A=常数

不可压缩流体作定常流动时,通过流束(或管道)的任一通流截面的流量相等通过通流截面的流速则与通流截面的面积成反比

.2.2.2连续性方程:质量守恒定律在流动液体情况下的具体152.2.3伯努利方程(能量方程):能量守恒定律在流动液体中的表达形式理想液体的伯努利方程实际液体的伯努利方程伯努利方程应用实例.2.2.3伯努利方程(能量方程):能量守恒定律在流动液体16理想液体的伯努利方程图2-8伯努利方程推导简图理想液体定常流动时,液体的任一通流截面上的总比能(单位重量液体的总能量)保持为定值。总比能由比压能()、比位能(Z)和比动能()组成,可以相互转化。由于方程中的每一项均以长度为量纲,所以亦分别称为压力水头,位置水头和速度水头静压力基本方程是伯努利方程的特例.理想液体的伯努利方程图2-8伯努利方程推导简图.17实际液体的伯努利方程α:动能修正系数,为截面上单位时间内流过液体所具有的实际动能,与按截面上平均流速计算的动能之比(层流时α=2,紊流时α=1):单位重量液体所消耗的能量.实际液体的伯努利方程.18伯努利方程应用实例液压泵吸油口处的真空度是油箱液面压力与吸油口处压力p2之差。液压泵吸油口处的真空度却不能太大.实践中一般要求液压泵的吸油口的高度h不超过0.5米.图2-10液压泵从油箱吸油.伯努利方程应用实例液压泵吸油口处的真空度是油箱图2-10液192.3管路系统流动分析两种流动状态定常管流的压力损失通过小孔的流动通过间隙的流动.2.3管路系统流动分析两种流动状态.202.3.1两种流动状态层流

紊流

雷诺数:液体在圆管中的流动状态决定于由管道中流体的平均流速υ、管道直径d和液体运动粘度这三个参数所组成的无量纲数的大小:流动液体的雷诺数低于临界雷诺数(由紊流转变为层流)时,流动状态为层流,反之液流的状态为紊流雷诺数的物理意义:流动液体的惯性力与粘性力之比.2.3.1两种流动状态层流.212.3.2定常管流的压力损失层流时管截面上的速度分布

图2-14圆管中的层流.2.3.2定常管流的压力损失层流时管截面上的速度分布图2222.3.2定常管流的压力损失流量

式中d:管道内径(m);l:管道长度(m);

:流体的动力粘度(N·S/m2);=p1-p2:管道两端的压力差(N/m2);

.2.3.2定常管流的压力损失流量.232.3.2定常管流的压力损失沿程压力损失:这种沿等直径管流动时的压力损失

λ:沿程压力损失系数,其理论值为.当流动液体为液压油时,.2.3.2定常管流的压力损失沿程压力损失:这种沿等直242.3.2定常管流的压力损失局部压力损失Δpξ:在流经阀口、管道截面变化、弯曲等处时,由于流动方向和速度变化及复杂的流动现象(旋涡,二次流等)而造成局部能量损失

ξ称为局部压力损失系数.2.3.2定常管流的压力损失局部压力损失Δpξ:在流经252.3.2定常管流的压力损失管路系统的压力损失和压力效率:整个管路系统的总压力损失是系统中所有直管的沿程压力损失和所有局部压力损失之和使用条件:管路系统中两相邻局部压力损失之间距离足够大(相连管径的10-20倍)

系统动力元件所供的工作压力:

管路系统的压力效率

.2.3.2定常管流的压力损失管路系统的压力损失和压力效率262.3.3通过小孔的流动

在液压与气压传动中常用通过改变阀口通流截面积或通过通流通道的长短来控制流量的节流装置来实现流量控制。这种节流装置的通流截面一般为不同形式的小孔。通过薄壁小孔(孔的通流长度l与孔径d之比l/d≤0.5)的流动通过细长小孔(小孔的长径比l/d>4)的流动.2.3.3通过小孔的流动在液压与气压传动中常用通过改27通过薄壁小孔的流动

称为小孔流量系数通过薄壁小孔的流量与液体粘度无关,因而流量受液体温度影响较小.但流量与孔口前后压差的关系是非线性的图2-15液体在薄壁小孔中的流动.通过薄壁小孔的流动图2-15液体在薄壁小孔中的流动.28通过细长小孔的流动是细长小孔的通流截面积液体流经细长小孔的流量将随液体温度的变化而变化。但细长小孔的流量与孔前后的压差关系是线性的.通过细长小孔的流动.292.3.3通过小孔的流动统一的经过小孔的流量公式

式中A:孔的通流截面积,Δp:孔前后压差,m:由孔结构形式决定的指数,0.5≤m≤1k:由孔口形式有关的系数

当孔为薄壁小孔时,m=0.5,为细长小孔时m=1,

.2.3.3通过小孔的流动统一的经过小孔的流量公式.302.3.4通过间隙的流动配合间隙泄漏:当流体流经这些间隙时就会发生从压力高处经

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论