版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省衡阳市康龙中学2021-2022学年高二数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知空间中的直线m、n和平面α,且m⊥α.则“m⊥n”是“n?α”成立的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件参考答案:B【考点】必要条件、充分条件与充要条件的判断.【分析】m⊥α,n?α?m⊥n,反之不成立,可能n∥α.即可判断出结论.【解答】解:∵m⊥α,n?α?m⊥n,反之不成立,可能n∥α.∴“m⊥n”是“n?α”成立的必要不充分条件.故选:B.2.函数f(x)=ln(x2+1)的图象大致是()A. B. C. D.参考答案:A考点: 函数的图象.
专题: 函数的性质及应用.分析: ∵x2+1≥1,又y=lnx在(0,+∞)单调递增,∴y=ln(x2+1)≥ln1=0,函数的图象应在x轴的上方,在令x取特殊值,选出答案.解答: 解:∵x2+1≥1,又y=lnx在(0,+∞)单调递增,∴y=ln(x2+1)≥ln1=0,∴函数的图象应在x轴的上方,又f(0)=ln(0+1)=ln1=0,∴图象过原点,综上只有A符合.故选:A点评: 对于函数的选择题,从特殊值、函数的性质入手,往往事半功倍,本题属于低档题.3.“a+c>b+d”是“a>b且c>d”的
(
)A.必要不充分条件
B.充分不必要条件C.充分必要条件
D.既不充分也不必要条件参考答案:A略4.设,则的虚部是(
)A. B. C. D.参考答案:B【分析】直接利用复数代数形式的乘除运算化简得,进而可得的虚部.【详解】∵,∴,∴的虚部是,故选B.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,共轭复数的概念,属于基础题.5.四名学生争夺三项冠军,获得冠军的可能的种数是
(
)A.81
B.64
C.24
D.4参考答案:A略6.定义:,已知数列满足,若对任意正整数,都有成立,则的值为
(
)
A.2
B.1
C.
D.
参考答案:D略7.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于()A.m B.m C.m D.m参考答案:B【考点】解三角形的实际应用.【专题】应用题;解三角形.【分析】由题意画出图形,由两角差的正切求出15°的正切值,然后通过求解两个直角三角形得到DC和DB的长度,作差后可得答案.【解答】解:如图,∠DAB=15°,∵tan15°=tan(45°﹣30°)==2﹣.在Rt△ADB中,又AD=60,∴DB=AD?tan15°=60×(2﹣)=120﹣60.在Rt△ADC中,∠DAC=60°,AD=60,∴DC=AD?tan60°=60.∴BC=DC﹣DB=60﹣(120﹣60)=120(﹣1)(m).∴河流的宽度BC等于120(﹣1)m.故选:B.【点评】本题给出实际应用问题,求河流在B、C两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.8.圆关于原点对称的圆的方程为(
)A. B.C.
D.参考答案:D9.若双曲线的中心在原点,离心率,左焦点是,则的渐近线的距离是(
)A.2
B.3
C.4
D.5参考答案:C10.设首项为l,公比为的等比数列的前n项和为,则
(
)
A.
B.
C.
D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.命题“?x∈R,x2≤0”的否定为
.参考答案:?x∈R,x2>0【考点】命题的否定.【分析】直接利用特称命题的否定是全称命题写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以,命题“?x∈R,x2≤0”的否定为:?x∈R,x2>0.故答案为:?x∈R,x2>0.【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.12.抛物线的准线方程是_______参考答案:【分析】先根据抛物线的标准方程得到焦点在y轴上以及,再直接代入即可求出其准线方程.【详解】因为抛物线的标准方程为,焦点在y轴上,所以:,即,所以,所以准线方程为:,故答案是:.【点睛】该题考查的是有关抛物线的几何性质,涉及到的知识点是已知抛物线的标准方程求其准线方程,属于简单题目.13.已知F1、F2为双曲线﹣=1(a>0,b>0)的左、右焦点,过F2作双曲线渐近线的垂线,垂足为P,若|PF1|2﹣|PF2|2=c2.则双曲线离心率的值为
.参考答案:2【考点】双曲线的简单性质.【分析】求出双曲线的一条渐近线方程,运用点到直线的距离公式,求得|PF2|=b,运用余弦函数的定义和余弦定理,计算即可得到所求值.【解答】解:设双曲线﹣=1(a>0,b>0)的一条渐近线方程为y=x,F2(c,0)到渐近线的距离为d=|PF2|==b,cos∠POF2==,在△POF1中,|PF1|2=|PO|2+|OF1|2﹣2|PO|?|OF1|?cos∠POF1=a2+c2﹣2ac?(﹣)=3a2+c2,则|PF1|2﹣|PF2|2=3a2+c2﹣b2=4a2,∵|PF1|2﹣|PF2|2=c2,∴4a2=c2,∴e=2.故答案为2.14.已知直平行六面体的各条棱长均为3,,长为2的线段的一个端点在上运动,另一端点在底面上运动,则的中点的轨迹(曲面)与共一顶点的三个面所围成的几何体的体积为为______
.参考答案:.解析:
15.在平面直角坐标系xOy中,抛物线x2=2py(p>0)上纵坐标为1的一点到焦点的距离为3,则焦点到准线的距离为.参考答案:4【考点】抛物线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】先根据抛物线的方程求得准线的方程,进而利用点A的纵坐标求得点A到准线的距离,进而根据抛物线的定义求得答案.【解答】解:依题意可知抛物线的准线方程为y=点A与抛物线焦点的距离为3,∴纵坐标为1,点A到准线的距离为+1=3,解得p=4.抛物线焦点(0,2),准线方程为y=﹣2,∴焦点到准线的距离为:4.故答案为:4.【点评】本题主要考查了抛物线的定义的运用.考查了学生对抛物线基础知识的掌握.属基础题.16.如图所示,圆O的直径AB=6,C为圆周上一点,BC=3.过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D、E,则∠DAC=
,线段AE的长为
.参考答案:
30°
317.设,,若是的充分条件,则的取值范围是
。参考答案:.因为是的充分条件,所以,则,解得.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设在处的切线方程是,其中为自然对数的底数.(1)求a,b的值(2)证明:参考答案:(1)(2)见证明【分析】(1)先对函数求导,根据题意列出方程组,求解即可得出结果;(2)先由(1)得,令,用导数方法判断函数的单调性,只需其最大值小于等于0即可.【详解】(1)由题意,可得解得(2)由(1)知令,则,,当,又,所以,使得即所以在上单调递增,在上单调递减所以,令,又所以,使得此时,,,;故【点睛】本题主要考查根据切线方程求参数的问题、以及导数方法证明不等式,熟记导数的几何意义、以及导数的方法研究函数单调性、最值等即可,属于常考题型.19.某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级子棉2吨、二级子棉1吨;生产乙种棉纱需耗一级子棉1吨、二级子棉2吨,每1吨甲种棉纱的利润是600元,每1吨乙种棉纱的利润是900元,工厂在生产这两种棉纱的计划中要求消耗一级子棉不超过300吨、二级子棉不超过250吨.甲、乙两种棉纱应各生产多少,能使利润总额最大?参考答案:【考点】简单线性规划的应用.【专题】数形结合;不等式的解法及应用.【分析】利用线性规划知识求解,建立约束条件,作出可行域,再根据目标函数z=600x+900y,利用截距模型,平移直线找到最优解,即可.【解答】解:设生产甲、乙两种棉纱分别为x吨、y吨,利润总额为z元,则目标函数为z=600x+900y.作出以上不等式组所表示的平面区域(如图),即可行域.作直线l:600x+900y=0,即直线l:2x+3y=0,把直线l向右上方平移至l1的位置时,直线经过可行域上的点M,且与原点距离最大,此时z=600x+900y取最大值.解方程组,解得M的坐标为()因此,当x=,y=时,z取得最大值.此时zmax=600×+900×=130000.答:应生产甲种棉纱吨,乙种棉纱吨,能使利润总额达到最大,最大利润总额为13万元.【点评】本题考查用线性规划解决实际问题中的最值问题,解题的关键是确定约束条件,作出可行域,利用目标函数的类型,找到最优解,属中档题.20.已知椭圆的右焦点为,离心率为.(1)求椭圆的方程;(2)设直线与椭圆相交于A,B两点,M,N分别为线段AF2,BF2的中点,若坐标原点O在以MN为直径的圆上,求k的值.参考答案:(1)由题意得
得a=2,所以=4,结合,解得=3,
所以,椭圆的方程为---------------------4分
(2)
由
消去得:(3+4k2)x2+8kx-8=0设A(x1,y1),B(x2,y2),所以---------6分依题意知,OM⊥ON,且,
----------------9分即(x1+1)(x2+1)+(kx1+1)(kx2+1)=0整理得:所以整理得:4k2+4k+1=0
所以
--------------------------12分21.(本小题满分12分)已知数列中,.(1)求证:是等比数列,并求的通项公式;(2)数列满足,数列的前n项和为,若不等式对一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国梯形管行业投资前景及策略咨询研究报告
- 2024至2030年中国机用工具行业投资前景及策略咨询研究报告
- 2024至2030年贴片铝电解项目投资价值分析报告
- 2024至2030年苹果脯项目投资价值分析报告
- 2024至2030年纸制洗脸巾项目投资价值分析报告
- 2024至2030年中国手扶式插秧机行业投资前景及策略咨询研究报告
- 2024至2030年中国圆筒钢板起重钳行业投资前景及策略咨询研究报告
- 2024至2030年拆装排骨床架项目投资价值分析报告
- 2024至2030年劈裂砌块项目投资价值分析报告
- 2024年中国视频图像传输卡市场调查研究报告
- 具备履行合同所必需的设备和专业技术能力的证明材料两篇
- 2023年03月四级真题全3套
- 仓库货物验收程序与标准
- Creo-7.0基础教程-配套课件
- 开具死亡医学证明书登记表
- 《一片叶子》课件
- 2023秋期国开电大专科《机械制造基础》在线形考(形考任务一至四)试题及答案
- 华师大版 初中科学 八上《第3章 浮力》 基础练习(含答案)
- 垃圾渗滤液处理站运维及渗滤液处理投标方案(技术标)
- GB/T 23220.2-2023烟叶储存保管方法第2部分:片烟
- 组蛋白的泛素化与去泛素化专家讲座
评论
0/150
提交评论