




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省朝阳市凌源刘杖子中学高二数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在2012年3月15日那天,库尔勒市物价部门对本市的5家商场的某商品的天销售量及其价格进行了调查,5家商场的售价:通过散点图可知与价格之间有较好的线性相关关系,其回归直线的方程是,则(
)A、-24
B、35.6
C、40.5
D、40参考答案:D2.已知x与y之间的一组数据:x0123ym35.57已求得关于y与x的线性回归方程为=2.1x+0.85,则m的值为()A.1 B.0.85 C.0.7 D.0.5参考答案: D【考点】线性回归方程.【分析】求出这组数据的横标和纵标的平均数,写出这组数据的样本中心点,把样本中心点代入线性回归方程求出m的值.【解答】解:∵==,=,∴这组数据的样本中心点是(,),∵关于y与x的线性回归方程=2.1x+0.85,∴=2.1×+0.85,解得m=0.5,∴m的值为0.5.故选:D.【点评】本题考查回归分析,考查样本中心点满足回归直线的方程,考查求一组数据的平均数,是一个运算量比较小的题目,并且题目所用的原理不复杂,是一个好题.3.椭圆上一点到右准线的距离为,则点到左焦点的距离为(
)A.
B.
C.
D.参考答案:A4.由“若a>b,则a+c>b+c”推理到“若a>b,则ac>bc”是()A.归纳推理 B.类比推理 C.演绎推理 D.不是推理参考答案:B【考点】类比推理.【分析】根据归纳推理是由部分到整体的推理,演绎推理是由一般到特殊的推理,类比推理是由特殊到特殊的推理;由“若a>b,则a+c>b+c”推理到“若a>b,则ac>bc”是由特殊到特殊的推理,所以它是类比推理,据此解答即可.【解答】解:根据归纳推理是由部分到整体的推理,演绎推理是由一般到特殊的推理,类比推理是由特殊到特殊的推理,由“若a>b,则a+c>b+c”推理到“若a>b,则ac>bc”是由特殊到特殊的推理,所以它是类比推理.故选:B.【点评】本题主要考查了归纳推理、类比推理和演绎推理的判断,属于基础题,解答此题的关键是熟练掌握归纳推理、类比推理和演绎推理的定义和区别.5.如图,正三棱柱ABC﹣A1B1C1的各棱长(包括底面边长)都是2,E,F分别是AB,A1C1的中点,则EF与侧棱C1C所成的角的余弦值是()A. B. C. D.2参考答案:B【考点】异面直线及其所成的角.【专题】计算题.【分析】先通过平移将两条异面直线平移到同一个起点F,取AC的中点G,连接FG,EG,∠EFG为EF与侧棱C1C所成的角,在直角三角形EFG中求出此角即可.【解答】解:取AC的中点G,连接FG,EG根据题意可知FG∥C1C,FG=C1C;而EG∥BC,EG=BC;∴∠EFG为EF与侧棱C1C所成的角,在Rt△EFG,cos∠EFG=故选:B【点评】本题主要考查了异面直线及其所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.6.如图,正方体ABCD﹣A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线()A.不存在 B.有1条 C.有2条 D.有无数条参考答案:D【考点】平面的基本性质及推论.【分析】由已知中E,F分别为棱AB,CC1的中点,结合正方体的结构特征易得平面ADD1A1与平面D1EF相交,由公理3,可得两个平面必有交线l,由线面平行的判定定理在平面ADD1A1内,只要与l平行的直线均满足条件,进而得到答案.【解答】解:由题设知平面ADD1A1与平面D1EF有公共点D1,由平面的基本性质中的公理知必有过该点的公共线l,在平面ADD1A1内与l平行的线有无数条,且它们都不在平面D1EF内,由线面平行的判定定理知它们都与面D1EF平行,故选:D7.在正三棱柱ABC—A1B1C1中,若AB=BB1,则AB1与C1B所成的角的大小为(
).A.60° B.90° C.105° D.75°参考答案:B略8.设双曲线的中心为点,若有且只有一对相较于点、所成的角为的直线和,使,其中、和、分别是这对直线与双曲线的交点,则该双曲线的离心率的取值范围是 ()A. B. C. D.参考答案:A9.下列有关命题的说法正确的是()A.“x2=1”是“x=1”的充分不必要条件B.“x=2时,x2﹣3x+2=0”的否命题为真命题C.命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”D.命题“若x=y,则sinx=siny”的逆否命题为真命题参考答案:D【考点】命题的真假判断与应用.【分析】A,“x2=1”是“x=1”的必要条件;B,“由x=1时,x2﹣3x+2=0可判定;C,“<0”的否定是:“≥0”;D,判定原命题真假,由命题的逆否命题与原命题同真假即可判定;【解答】解:对于A,“x2=1”是“x=1”的必要条件,故错;对于B,“x=2时,x2﹣3x+2=0”的否命题为“x≠2时,x2﹣3x+2≠0”,∵x=1时,x2﹣3x+2=0,故错;对于C,命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1≥0”,故错;对于D,命题“若x=y,则sinx=siny”为真命题,故其逆否命题为真命题,故正确;故选:D10.l1、l2是两条异面直线,直线m1、m2与l1、l2都相交,则m1、m2的位置关系是()A.异面或平行B.相交
C.异面
D.相交或异面参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.当实数变化时,直线与直线都过一个定点,记点的轨迹为曲线,为曲线上任意一点.若点,则的最大值为
.参考答案:.12.(坐标系与参数方程选做题)在直角坐标系xOy中,已知曲线C的参数方程是(是参数),若以O为极点,x轴的正半轴为极轴,则曲线C的极坐标方程可写为
.参考答案:13.设两个非零向量不共线,且与共线,则实数k的值为
参考答案:14.若函数在其定义域内的一个子区间内不是单调函数,则实数的取值范围是
.参考答案:15.将数列{an}按如图所示的规律排成一个三角形表,并同时满足以下两个条件:①各行的第一个数a1,a2,a5构成公差为d的等差数列;②从第二行起,每行各数按从左到右的顺序构成公比为q的等比数列.若a1=1,a3=4,a5=3,则d=1;第n行的和Tn=
.参考答案:n?22n﹣1﹣n【考点】归纳推理.【专题】综合题;推理和证明.【分析】依题意,可求得d=1,又a3=a2q=(a1+d)q,可求得q=2;记第n行第1个数为A,易求A=n;据此数表的排列规律可知:每行的总个数构成一个以1为首项,2为公差的等差数列,而第n行共有(2n﹣1)个数,第n行各数为以n为首项,q=2为公比的等比数列,于是可求得第n行各数的和Tn.【解答】解:依题意得a5=a1+2d,∴3=1+2d,∴d=1.又∵a3=a2q=(a1+d)q,q=2,∴d,q的值分别为1,2;记第n行第1个数为A,则A=a1+(n﹣1)d=n,又根据此数表的排列规律可知:每行的总个数构成一个以1为首项,2为公差的等差数列,∴第n行共有(2n﹣1)个数,∴第n行各数为以n为首项,q=2为公比的等比数列,因此其总数的和Tn==n?22n﹣1﹣n.故答案为:1,n?22n﹣1﹣n;【点评】本题考查数列的求和,突出考查归纳推理,考查方程思想与运算推理能力,判断出每行的总个数构成一个以1为首项,2为公差的等差数列是关键.16.在△ABC中,,S△ABC=,|则∠BAC=.参考答案:考点:平面向量数量积的运算.
专题:平面向量及应用.分析:根据条件可以判断出∠BAC为锐角,从而根据三角形的面积公式即可得到,从而得出sin,从而得出.解答:解:如图,;∴;∴;∴=;∴;∴.故答案为:.点评:考查数量积的计算公式,三角形内角的范围及内角和,以及三角形的面积公式:S=,已知三角函数值求角17.记函数的定义域为D.在区间[-4,5]上随机取一个数x,则xD的概率
▲
.参考答案:由6+x-x2≥0,即x2-x-6≤0得-2≤x≤3,所以D=[-2,3]?[-4,5],由几何概型的概率公式得x∈D的概率P=,答案为.
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知点点两点.(1)求以为直径的圆的方程;(2)若直线与圆交于两不同点,求线段的长度.参考答案:(1)由题意圆心为中点,所以半径所以圆的方程为;…6分(2)圆心到直线的距离所以,所以…12分19.)如图,正方形与梯形所在的平面互相垂直,,∥,,点在线段上.(I)当点为中点时,求证:∥平面;(II)当平面与平面所成锐二面角的余弦值为时,求三棱锥的体积.参考答案:解:(1)以直线、、分别为轴、轴、轴建立空间直角坐标系,则,,,所以.∴————————2分
又,是平面的一个法向量.
∵即
∴∥平面——————4分
(2)设,则,又设,则,即.—6分20.(本小题满分12分)在中,角的对边分别为,且
(1)求角;(2)若,且的面积为,求的值.参考答案:(本小题满分12分)在中,角的对边分别为,且
(1)求角;(2)若,且的面积为,求的值.解1)------------------------------------------2分
---------------------------------------------------------4分,
--------------------------------------------6分
--9分
---12分略21.第35届牡丹花会期间,我班有5名学生参加志愿者服务,服务场所是王城公园和牡丹公园.(1)若学生甲和乙必须在同一个公园,且甲和丙不能在同一个公园,则共有多少种不同的分配方案?(2)每名学生都被随机分配到其中的一个公园,设X,Y分别表示5名学生分配到王城公园和牡丹公园的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列和数学期望E(ξ)参考答案:【考点】CH:离散型随机变量的期望与方差;CG:离散型随机变量及其分布列.【分析】(1)由题意可得:共有2种不同的分配方案.(2)对于两个公园分配人数分别为:0,5;1,4;2,3;3,2;4,1;5,0.可得ξ=|X﹣Y|的取值分别为:1,3,5.于是P(ξ=1)=,P(ξ=3)=,P(ξ=5)=.【解答】解:(1)学生甲和乙必须在同一个公园,且甲和丙不能在同一个公园,则共有2=6种不同的分配方案.(2)对于两个公园分配人数分别为:0,5;1,4;2,3;3,2;4,1;5,0.∴ξ=|X﹣Y|的取值分别为:1,3,5.∴P(ξ=1)===,P(ξ=3)===,P(ξ=5)===
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 楼梯店铺利用方案(3篇)
- 烧烤聚餐采购方案(3篇)
- 接待会议方案(3篇)
- 企业运维方案(3篇)
- DB23-T3003-2021-马铃薯微型薯温室床上畦作生产技术规程-黑龙江省
- 公司环保巡查管理制度
- 小区重点人员管理制度
- 员工股权分红方案(3篇)
- 医院隐私安全管理制度
- 破损路面重建方案(3篇)
- 运动解剖学习题集
- 国家开放大学《金融法规》章节自测练习参考答案
- 《言语治疗技术》考试复习题库(含答案)
- 外墙体抹灰工艺技术控制方框图
- 国军标体系之公司质量目标(重要)
- DCS系统调试步骤
- JJF(津) 54-2021 液体流量计在线校准规范
- 关于进一步厉行节约推行无纸化办公的通知
- 职业生涯规划外文翻译文献
- 丽声英语百科分级读物第四级Animal Tricks课件
- 煤矿开采学基本概念
评论
0/150
提交评论