两点间的距离公式和中点公式课件_第1页
两点间的距离公式和中点公式课件_第2页
两点间的距离公式和中点公式课件_第3页
两点间的距离公式和中点公式课件_第4页
两点间的距离公式和中点公式课件_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

圆直线直线圆平面直角坐标系中的

距离公式和中点公式

圆直线直线圆平面直角坐标系中的

距离复习引入一般地,如果A(x1),B(x2),则这两点的距离公式为1.数轴上的距离公式|AB|=|x2-x1|.2.数轴上的中点公式一般地,在数轴上,A(x1),B(x2)的中点坐标x满足关系式x=复习引入一般地,如果A(x1),B(x2),则这两点的距探究一xyBACA1A2B2B1O过A,B分别向x轴作垂线AA1,BB1,垂足分别为A1,B1;如图所示.设A(x1,y1),B(x2,y2).过A,B分别向y轴作垂线AA2,BB2,垂足分别为A2,B2;其中直线BB1和AA2相交于点C.探究一xyBACA1A2B2B1O过A,B分别向x平面上两点间的距离公式新授A(x2,y2)xyB(x2,y2)O设点A(x1,y1),B(x2,y2),则平面上两点间的距离公式新授A(x2,y2)xyB(x2因为

x1=2,x2=-2,y1=-4,y2=3,例1已知A(2,-4),B(-2,3),求|AB|.因此所以

dx=x2-x1=-2-2=-4,dy=y2-y1=3-(-4)=7.解:新授因为例1已知A(2,-4),B(-2,3),求|AB练习一求两点之间的距离:(1)A(6,2),B(-2,5);(2)C(2,-4),D(7,2).练习一求两点之间的距离:探究三xyBAA1A2B2B1O过A,B,M分别向x轴作垂线AA1,BB1,MM1,垂足分别为A1,B1,M1;如图所示.设M(x,y)是A(x1,y1),B(x2,y2)的中点.过A,B,M分别向y轴作垂线AA2,BB2,MM2,垂足分别为A2,B2,M2

.MM1M2探究三xyBAA1A2B2B1O过A,B,M分别向xyBAA1A2B2B1OMM1M2探究三如图所示.设M(x,y)是A(x1,y1),B(x2,y2)的中点.(4)你能写出点M的坐标吗?(1)你能说出垂足A1,A2,B1,B2,M1,M2的坐标吗?(2)点M是AB中点,M1是A1,B1的中点吗?它们的坐标有怎样的关系?(3)M2是A2,B2的中点吗?它们的坐标有怎样的关系?xyBAA1A2B2B1OMM1M2探究三如图所示.设M(在坐标平面内,两点A(x1,y1),B(x2,y2)的中点M(x,y)的坐标之间满足:新授中点公式在坐标平面内,两点A(x1,y1),B(x2,y2)新例2求证:任意一点P(x,y)与点P

(-x,-y)关于坐标原点成中心对称.新授证明设P与P的对称中心为(x0,y0),则所以坐标原点为P与P的对称中心.例2求证:任意一点P(x,y)与点P(-x,-y求下列各点关于坐标原点的对称点:A(2,3),B(-3,5),C(-2,-4),D(3,-5).练习二求下列各点关于坐标原点的对称点:练习二例3已知坐标平面内的任意一点P(a,b),分别求它关于x轴的对称点P

,关于y轴的对称点P的坐标.xyP(a,b)OP

P

M(1)如果点P与P

关于x轴对称,PP与x轴垂直吗?P的横坐标是多少

?(2)PP

与x轴的交点M是线段PP的中点吗?点M的纵坐标是多少?(3)你能求出P

的纵坐标吗?怎么求的?(4)由以上分析,点P

的坐标是多少?(5)你能求出P

的坐标吗?新授例3已知坐标平面内的任意一点P(a,b),xyP(a,b求下列各点关于x轴和y轴的对称点的坐标:A(2,3),B(-3,5),C(-2,-4),D(3,-5).练习三求下列各点关于x轴和y轴的对称点的坐标:练习三例4已知平行四边形ABCD的三个顶点A(-3,0),

B(2,-2),C(5,2),求顶点D的坐标.所以顶点D的坐标为(0,4).解:因为平行四边形的两条对角线的中点相同,所以它们的坐标也相同.设点D的坐标为(x,y),则解得新授例4已知平行四边形ABCD的三个顶点A(-3,0),练习五已知平行四边形ABCD的三个顶点

A(0,0),B(2,-4)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论