2021年福建省龙岩市长汀县涂坊中学高二数学文下学期期末试题含解析_第1页
2021年福建省龙岩市长汀县涂坊中学高二数学文下学期期末试题含解析_第2页
2021年福建省龙岩市长汀县涂坊中学高二数学文下学期期末试题含解析_第3页
2021年福建省龙岩市长汀县涂坊中学高二数学文下学期期末试题含解析_第4页
2021年福建省龙岩市长汀县涂坊中学高二数学文下学期期末试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021年福建省龙岩市长汀县涂坊中学高二数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.某国际科研合作项目由两个美国人,一个法国人和一个中国人共同开发完成,现从中随机选出两个人作为成果发布人,现选出的两人中有中国人的概率为(

)A.

B.

C.

D.1参考答案:C2.已知圆+y=4和直线y=mx的交点分别为P、Q两点,O为坐标原点,

则︱OP︱·︱OQ︱=(

)A

1+m

B

C

5

D

10参考答案:C

错因:学生不能结合初中学过的切割线定︱OP︱·︱OQ︱等于切线长的平方来解题。

3.设是定义在R上的奇函数,当时,,则()A.

B.

C.

D.参考答案:A4.f(x)定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)≤0,对任意的正数a,b,若a<b,则必有()A.bf(b)≤af(a) B.bf(a)≤af(b) C.af(a)≤bf(b) D.af(b)≤bf(a)参考答案:A【考点】函数的单调性与导数的关系.【分析】先构造函数g(x)=xf(x),x∈(0,+∞),通过求导利用已知条件即可得出.【解答】解:设g(x)=xf(x),x∈(0,+∞),则g′(x)=xf′(x)+f(x)≤0,∴g(x)在区间x∈(0,+∞)单调递减或g(x)为常函数,∵a<b,∴g(a)≥g(b),即af(a)≥bf(b).故选:A.5.在一个投掷硬币的游戏中,把一枚硬币连续抛两次,记“第一次出现正面”为事件A,“第二次出现正面”为事件B,则P(B|A)等于()参考答案:A6.定义在R上的可导函数满足,且在(-∞,0]上,若,则实数a的取值范围是(

)A. B.

C.

D.参考答案:A函数f(x)满足,则函数为奇函数,不妨令f(x)=2x,则奇函数同时满足在(-∞,0]上,此时即:,求解关于实数a的不等式可得实数a的取值范围是.本题选择A选项.

7.函数的零点所在的一个区间是( )A.(2,3) B.(0,1) C.(-1,0) D.(1,2)参考答案:A详解:函数,可得:f(﹣1)=5>0,f(0)=3>0,f(1)=>0,f(2)=>0,f(3)=﹣,由零点定理可知,函数的零点在(2,3)内.故选:A.8.袋中装有3个黑球、2个白球、1个红球,从中任取两个,互斥而不对立的事件是()A.“至少有一个黑球”和“没有黑球”B.“至少有一个白球”和“至少有一个红球”C.“至少有一个白球”和“红球黑球各有一个”D.“恰有一个白球”和“恰有一个黑球”参考答案:C【考点】互斥事件与对立事件.【分析】利用对立事件、互斥事件的定义求解.【解答】解:在A中:“至少有一个黑球”和“没有黑球”既不能同时发生,也不能同时不发生,故这两个事件是对立事件,故A错误;在B中:“至少有一个白球”和“至少有一个红球”能够同时发生,故这两个事件不是互斥事件,故B错误;在C中:“至少有一个白球”和“红球黑球各有一个”不能同时发生,但能同时不发生,故这两个事件是互斥而不对立的事件,故C正确;在D中:“恰有一个白球”和“恰有一个黑球”能够同时发生,故这两个事件不是互斥事件,故D错误.故选:C.9.()A.B.C.D.

参考答案:A10.已知,且H=,其中表示数集中的最大数.则下列结论中正确的是A.H有最大值

B.H有最小值C.H有最小值

D.H有最大值参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.函数的最小值是

参考答案:12.三进制数121(3)化为十进制数为.参考答案:16【分析】利用累加权重法,即可将三进制数转化为十进制,从而得解.【解答】解:由题意,121(3)=1×32+2×31+1×30=16故答案为:1613.

。(结果用式子表示)参考答案:14.过点A(4,1)的圆C与直线相切于点B(2,1),则圆C的方程为

.参考答案:15.在△ABC中,已知,则b=.参考答案:考点:正弦定理专题:解三角形.分析:利用正弦定理列出关系式,将sinA,sinB及a的值代入计算即可求出b的值.解答:解:∵sinA=,sinB=,a=6,∴由正弦定理=得:b===5.故答案为:5点评:此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.16.已知棱长为1的正方体ABCD-A1B1C1D1中,E是A1B1的中点,求直线AE与平面ABC1D1所成角的正弦值

.参考答案:略17.如果数列中的项构成新数列是公比为的等比数列,则它构成的数列是公比为k的等比数列.已知数列满足:,,且,根据所给结论,数列的通项公式

.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=﹣x+xlnx(1)求函数f(x)的单调区间;(2)若y=f(x)﹣m﹣1在定义域内有两个不同的零点,求实数m的取值范围.参考答案:【考点】利用导数研究函数的单调性;根的存在性及根的个数判断.【分析】(1)求出导函数,利用导函数的符号,求解函数的单调区间.(2)y=f(x)﹣m﹣1在(0,+∞)内有两个不同的零点,可转化为f(x)=m+1在(0,+∞)内有两个不同的根,可转化为y=f(x)与y=m+1图象上有两个不同的交点,画出函数的图图象,判断求解即可.【解答】解:(1)f'(x)=lnx,令f'(x)>0,解得x>1;令f'(x)<0,解得0<x<1;∴f(x)的增区间为(1,+∞),减区间为(0,1)(2)y=f(x)﹣m﹣1在(0,+∞)内有两个不同的零点,可转化为f(x)=m+1在(0,+∞)内有两个不同的根,也可转化为y=f(x)与y=m+1图象上有两个不同的交点,由(Ⅰ)知,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,f(x)min=f(1)=﹣1,由题意得,m+1>﹣1即m>﹣2①,由图象可知,m+1<0,即m<﹣1②,由①②可得﹣2<m<﹣1.19.如图,P是直线x=4上一动点,以P为圆心的圆Γ经定点B(1,0),直线l是圆Γ在点B处的切线,过A(﹣1,0)作圆Γ的两条切线分别与l交于E,F两点.(1)求证:|EA|+|EB|为定值;(2)设直线l交直线x=4于点Q,证明:|EB|?|FQ|=|BF|?|EQ|.参考答案:【分析】(1)设AE切圆于M,直线x=4与x轴的交点为N,则EM=EB,可得|EA|+|EB|=|AM|====4;(2)确定E,F均在椭圆=1上,设直线EF的方程为x=my+1(m≠0),联立,E,B,F,Q在同一条直线上,|EB|?|FQ|=|BF?|EQ|等价于﹣y1?+y1y2=y2?﹣y1y2,利用韦达定理,即可证明结论.【解答】证明:(1)设AE切圆于M,直线x=4与x轴的交点为N,则EM=EB,∴|EA|+|EB|=|AM|====4为定值;(2)同理|FA|+|FB|=4,∴E,F均在椭圆=1上,设直线EF的方程为x=my+1(m≠0),令x=4,yQ=,直线与椭圆方程联立得(3m2+4)y2+6my﹣9=0,设E(x1,y1),F(x2,y2),则y1+y2=﹣,y1y2=﹣∵E,B,F,Q在同一条直线上,∴|EB|?|FQ|=|BF?|EQ|等价于﹣y1?+y1y2=y2?﹣y1y2,∴2y1y2=(y1+y2)?,代入y1+y2=﹣,y1y2=﹣成立,∴|EB|?|FQ|=|BF?|EQ|.20.从4名男生和5名女生中任选5人参加数学课外小组.(1)若选2名男生和3名女生,且女生甲必须入选,求共有多少种不同的选法;(2)记“男生甲和女生乙不同时入选”为事件A,求A发生的概率.参考答案:【考点】CB:古典概型及其概率计算公式.【分析】(1)利用排列组合和乘法原理能求出选2名男生和3名女生,且女生甲必须入选,共有多少种不同的选法.(2)记“男生甲和女生乙不同时入选”为事件A,则表示“男生甲和女生乙同时入选”,利用对立事件概率计算公式能求出事件A发生的概率.【解答】解:(1)从9人中任选5人,基本事件总数n==126,选2名男生和3名女生,且女生甲必须入选包含的基本事件总数m==36,∴选2名男生和3名女生,且女生甲必须入选,共有36种不同的选法.(2)记“男生甲和女生乙不同时入选”为事件A,则表示“男生甲和女生乙同时入选”,∴P()==,∴A发生的概率P(A)=1﹣P()=1﹣.【点评】本题考查排列组合的应用,考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.21.已知常数a>0,函数f(x)=ln(1+ax)﹣.(Ⅰ)讨论f(x)在区间(0,+∞)上的单调性;(Ⅱ)若f(x)存在两个极值点x1,x2,且f(x1)+f(x2)>0,求a的取值范围.参考答案:【考点】利用导数研究函数的单调性;函数在某点取得极值的条件.【分析】(Ⅰ)利用导数判断函数的单调性,注意对a分类讨论;(Ⅱ)利用导数判断函数的极值,注意a的讨论及利用换元法转化为求函数最值问题解决.【解答】解:(Ⅰ)∵f(x)=ln(1+ax)﹣.∴f′(x)==,∵(1+ax)(x+2)2>0,∴当1﹣a≤0时,即a≥1时,f′(x)≥0恒成立,则函数f(x)在(0,+∞)单调递增,当0<a≤1时,由f′(x)=0得x=±,则函数f(x)在(0,)单调递减,在(,+∞)单调递增.(Ⅱ)由(Ⅰ)知,当a≥1时,f′(x)≥0,此时f(x)不存在极值点.因此要使f(x)存在两个极值点x1,x2,则必有0<a<1,又f(x)的极值点值可能是x1=,x2=﹣,且由f(x)的定义域可知x>﹣且x≠﹣2,∴﹣>﹣且﹣≠﹣2,解得a≠,则x1,x2分别为函数f(x)的极小值点和极大值点,∴f(x1)+f(x2)=ln[1+ax1]﹣+ln(1+ax2)﹣=ln[1+a(x1+x2)+a2x1x2]﹣=ln(2a﹣1)2﹣=ln(2a﹣1)2+﹣2.令2a﹣1=x,由0<a<1且a≠得,当0<a<时,﹣1<x<0;当<a<1时,0<x<1.令g(x)=lnx2+﹣2.(i)当﹣1<x<0时,g(x)=2ln(﹣x)+﹣2,∴g′(x)=﹣=<0,故g(x)在(﹣1,0)上单调递减,g(x)<g(﹣1)=﹣4<0,∴当0<a<时,f(x1)+f(x2)<0;(ii)当0<x<1.g(x)=2lnx+﹣2,g′(x)=﹣=<0,故g(x)在(0,1)上单调递减,g(x)>g(1)=0,∴当<a<1时,f(x1)+f(x2)>0;综上所述,a的取值范围是(,1).22.某高中有高一新生500名,分成水平相同的A,B两类进行教学实验.为对比教学效果,现用分层抽样的方法从A、B两类学生中分别抽取了40人、60人进行测试.(Ⅰ)求该学校高一新生A、B两类学生各多少人?(Ⅱ)经过测试,得到以下三个数据图表:图一:75分以上A、B两类参加测试学生成绩的茎叶图(茎、叶分别是十位和个位上的数字)(如图1)图二:100名测试学生成绩的频率分布直方图2;表一:100名测试学生成绩频率分布表;组号分组频数频率1[55,60)50.052[60,65)200.203[65,70)

4[70,75)350.355[75,80)

6[80,85)

合计1001.00①先填写频率分布表(表一)中的六个空格,然后将频率分布直方图(图二)补充完整;②该学校拟定从参加考试的79分以上(含79分)的B类学生中随机抽取2人代表学校参加市比赛,求抽到的2人分数都在80分以上的概率.参考答案:【考点】古典概型及其概率计算公式;频率分布直方图.【分析】(Ⅰ)由题知A类学生有人则B类学生有500﹣200=300人(Ⅱ)通过读频率分布直方图可轻易获取所要解答.【解答】解析:(Ⅰ)由题知A类学生有(人)…2分则B类学生

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论