




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.不等式x-1>4A.xx<-3 B.xx>52.下列关于积分的结论中不正确的是()A. B.C.若在区间上恒正,则 D.若,则在区间上恒正3.已知X的分布列为X-101P设Y=2X+3,则E(Y)的值为A. B.4 C.-1 D.14.已知面积为的等腰内接于抛物线,为坐标原点,,为抛物线的焦点,点.若是抛物线上的动点,则的最大值为()A. B. C. D.5.在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接待,现将其中的五个参会国的人员安排酒店住宿,这五个参会国要在、、三家酒店选择一家,且每家酒店至少有一个参会国入住,则这样的安排方法共有A.种 B.种C.种 D.种6.从5种主料中选2种,8种辅料中选3种来烹饪一道菜,烹饪方式有5种,那么最多可以烹饪出不同的菜的种数为A.18 B.200 C.2800 D.336007.己知复数z满足,则A. B. C.5 D.258.设,若是的等比中项,则的最小值为()A.8 B. C.1 D.49.的展开式中的系数是()A.58 B.62 C.52 D.4210.已知向量,,则()A. B. C. D.11.曲线与直线围成的封闭图形的面积为()A. B. C. D.12.已知抛物线的焦点为F,点是抛物线C上一点,以点M为圆心的圆与直线交于E,G两点,若,则抛物线C的方程是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,则展开式中项的系数为______.14.若对任意实数,都有,则__________。15.若与的夹角为,,,则________.16.函数在其极值点处的切线方程为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,已知.(1)求证:;(2)若,求A的值.18.(12分)已知数列的前n项和为,满足,且,.(1)求,,的值;(2)猜想数列的通项公式,并用数学归纳法予以证明.19.(12分)选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为(为参数,),以直角坐标系的原点为极点,以轴的正半轴为极轴建立坐标系,圆的极坐标方程为.(1)求圆的直角坐标方程(化为标准方程)及曲线的普通方程;(2)若圆与曲线的公共弦长为,求的值.20.(12分)已知圆C经过P(4,-2),Q(-1,3)两点,且圆心C在直线x+y-1=0上.(1)求圆C的方程;(2)若直线l∥PQ,且l与圆C交于点A,B且以线段AB为直径的圆经过坐标原点,求直线l的方程.21.(12分)设椭圆:的离心率与双曲线的离心率互为倒数,且椭圆的长轴长为1.(1)求椭圆的标准方程;(2)若直线交椭圆于,两点,()为椭圆上一点,求面积的最大值.22.(10分)某学校课题组为了研究学生的数学成绩与学生细心程度的关系,在本校随机调查了100名学生进行研究.研究结果表明:在数学成绩及格的60名学生中有45人比较细心,另外15人比较粗心;在数学成绩不及格的40名学生中有10人比较细心,另外30人比较粗心.(I)试根据上述数据完成列联表:(II)能否在犯错误的概率不超过0.001的前提下认为学生的数学成绩与细心程度有关系?0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828参考公式:,其中.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
不等式x-1>4等价于x-1<-4或x-1>4【详解】x-1>4⇔x-1>4或x-1<-4⇔x>5或x<-3,故选:C【点睛】本题考查绝对值不等式的解法,考查绝对值不等式的等价条件的应用,属于基础题。2、D【解析】
结合定积分知识,对选项逐个分析可选出答案.【详解】对于选项A,因为函数是R上的奇函数,所以正确;对于选项B,因为函数是R上的偶函数,所以正确;对于选项C,因为在区间上恒正,所以图象都在轴上方,故正确;对于选项D,若,可知的图象在区间上,在轴上方的面积大于下方的面积,故选项D不正确.故选D.【点睛】本题考查了定积分,考查了函数的性质,属于基础题.3、A【解析】由条件中所给的随机变量的分布列可知EX=﹣1×+0×+1×=﹣,∵E(2X+3)=2E(X)+3,∴E(2X+3)=2×(﹣)+3=.故答案为:A.4、B【解析】
根据题意求得两点关于对称,得到直线的方程为,由的面积为,求得,再把过点N的直线方程为,代入,求得判别式求得,最后利用抛物线的定义,即可求解.【详解】设等腰直角三角形的顶点,且,由,得,所以,即,因为,所以,即两点关于对称,所以直线的方程为,由,解得或,故,所以,因为的面积为,所以,过点N的直线方程为,代入可得,所以由,可得,此时直线的倾斜角为,过M作准线的垂线,垂足为A,则,所以,所以直线的倾斜角为或时,此时的最大值为,故选B.【点睛】本题主要考查了抛物线的标准方程及其简单的几何性质的应用,其中解答中求得两点关于对称,合理利用抛物线的定义是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.5、D【解析】
根据题意,分2步进行分析:①把5个个参会国的人员分成三组,一种是按照1、1、3;另一种是1、2、2;由组合数公式可得分组的方法数目,②,将分好的三组对应三家酒店;由分步计数原理计算可得答案.【详解】根据题意,分2步进行分析:
①、五个参会国要在a、b、c三家酒店选择一家,且这三家至少有一个参会国入住,
∴可以把5个国家人分成三组,一种是按照1、1、3;另一种是1、2、2
当按照1、1、3来分时共有C53=10种分组方法;
当按照1、2、2来分时共有种分组方法;
则一共有种分组方法;
②、将分好的三组对应三家酒店,有种对应方法;
则安排方法共有种;
故选D.【点睛】本题考查排列组合的应用,涉及分类、分步计数原理的应用,对于复杂一点的计数问题,有时分类以后,每类方法并不都是一步完成的,必须在分类后又分步,综合利用两个原理解决.6、C【解析】
根据组合定义以及分布计数原理列式求解.【详解】从5种主料中选2种,有种方法,从8种辅料中选3种,有种方法,根据分布计数原理得烹饪出不同的菜的种数为,选C.【点睛】求解排列、组合问题常用的解题方法:分布计数原理与分类计数原理,具体问题可使用对应方法:如(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法.7、B【解析】
先计算复数再计算.【详解】故答案选B【点睛】本题考查了复数的化简,复数的模,属于基础题型.8、D【解析】∵是的等比中项,∴3=3a•3b=3a+b,∴a+b=1.a>2,b>2.∴==2.当且仅当a=b=时取等号.故选D.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误9、D【解析】
由题意利用二项展开式的通项公式,赋值即可求出.【详解】的展开式中的系数是.选D.【点睛】本题主要考查二项式定理的展开式以及赋值法求展开式特定项的系数.10、A【解析】
先求出的坐标,再根据向量平行的坐标表示,列出方程,求出.【详解】由得,解得,故选A.【点睛】本题主要考查向量的加减法运算以及向量平行的坐标表示.11、B【解析】由,直线,令,可得或,曲线与直线交于点或,因此围成的封闭图形的面积,故选B.12、C【解析】
作,垂足为点D.利用点在抛物线上、,结合抛物线的定义列方程求解即可.【详解】作,垂足为点D.由题意得点在抛物线上,则得.①由抛物线的性质,可知,,因为,所以.所以,解得:.②.由①②,解得:(舍去)或.故抛物线C的方程是.故选C.【点睛】本题考查抛物线的定义与几何性质,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、-2【解析】
利用定积分可求=2,则二项式为,展开式的通项:.令5-2r=-1,解得r=1.继而求出系数即可.【详解】∵=2,则二项式的展开式的通项:,令5-2r=-1,解得r=1.∴展开式中x-1的系数为.故答案为:-2.【点睛】本题考查二项式定理通项的应用,根据通项公式展开即可,属于基础题.14、6【解析】
将原式变为,从而可得展开式的通项,令可求得结果.【详解】由题意得:则展开式通项为:当,即时,本题正确结果:【点睛】本题考查利用二项式定理求解指定项的系数的问题,关键是能够构造出合适的形式来进行展开.15、【解析】
,由此求出结果.【详解】解:与的夹角为,,,.故答案为:.【点睛】本题考查向量的模的求法,考查向量的数量积公式,考查运算能力,属于基础题.16、【解析】,令,此时函数在其极值点处的切线方程为考点::导数的几何意义.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】试题分析:(1)已知的向量的数量积,要证明的是角的关系,故我们首先运用数量积定义把已知转化为三角形的边角关系,由已知可得,即,考虑到求证式只是角的关系,因此我们再应用正弦定理把式子中边的关系转化为角的关系,即有,而这时两边同除以即得待证式(要说明均不为零).(2)要求解的大小,一般是求出这个角的某个三角函数值,本题应该求,因为(1)中有可利用,思路是.试题解析:(1)∵,∴,即.2分由正弦定理,得,∴.4分又∵,∴.∴即.6分(2)∵,∴.∴.8分∴,即.∴.10分由(1),得,解得.12分∵,∴.∴.14分考点:(1)向量的数量积的定义与正弦定理;(2)已知三角函数值,求角.18、(1),,(2)猜想,证明见解析.【解析】
1利用代入计算,可得结论;2猜想,然后利用归纳法进行证明,检验时等式成立,假设时命题成立,证明当时命题也成立.【详解】1,且,当时,,,当时,,,或舍,当时,,,或舍,,,;2由1猜想,下面用数学归纳法证明:①当时,,显然成立,②假设时,结论成立,即,则当时,由,有,,,或舍,时结论成立,由①②知当,均成立.【点睛】本题考查了归纳法的证明,归纳法一般三个步骤:验证成立;假设成立;利用已知条件证明也成立,从而求证,这是数列的通项一种常用求解的方法,属中档题.19、(1)曲线的直角坐标方程为,曲线的普通方程为;(2).【解析】分析:(1)由极坐标与直角坐标的互化公式即可得圆的直角坐标方程;消去参数即可得曲线的普通方程;(2)联立圆C与曲线,因为圆的直径为,且圆与曲线的公共弦长为,即公共弦直线经过圆的圆心,即可得到答案.详解:(1)由,得,所以,即,故曲线的直角坐标方程为.曲线的普通方程为(2)联立,得因为圆的直径为,且圆与曲线的公共弦长为,所以直线经过圆的圆心,则,又所以点睛:求解与极坐标有关的问题的主要方法(1)直接利用极坐标系求解,可与数形结合思想配合使用;(2)转化为直角坐标系,用直角坐标求解.使用后一种方法时,应注意若结果要求的是极坐标,还应将直角坐标化为极坐标.20、(1)(2)y=-x+4或y=-x-3【解析】
(1)由圆的性质知圆心在线段的垂直平分线上,因此可求得线段的垂直平分线的方程,与方程联立,可求得圆心坐标,再求得半径后可得圆标准方程;(2)设的方程为.代入圆方程,设A(x1,y1),B(x2,y2),则x1+x2=m+1,x1x2=-1.而以线段AB为直径的圆经过坐标原点,则有,即,由此可求得,得直线方程.【详解】(1)∵P(4,-2),Q(-1,3),∴线段PQ的中点M,斜率kPQ=-1,则PQ的垂直平分线方程为,即.解方程组得∴圆心C(1,2),半径.故圆C的方程为.(2)由l∥PQ,设l的方程为.代入圆C的方程,得.设A(x1,y1),B(x2,y2),则x1+x2=m+1,x1x2=-1.故y1y2=(m-x1)(m-x2)=m2+x1x2-m(x1+x2),依题意知OA⊥OB,则.∴(x1,y1)·(x2,y2)=x1x2+y1y2=2,于是m2+2x1x2-m(x1+x2)=2,即m2-m-12=2.∴m=4或m=-3,经检验,满足Δ>2.故直线l的方程为y=-x+4或y=-x-3.【点睛】本题考查求圆的标准方程,考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 客房应急房管理制度
- 室外休息区管理制度
- 库房领用料管理制度
- 影像科费用管理制度
- 微商城推广管理制度
- 心理健康室管理制度
- 快递站消毒管理制度
- 怎样学餐饮管理制度
- 总商会培训管理制度
- 慈善会日常管理制度
- 上海市市辖区(2024年-2025年小学四年级语文)统编版期末考试((上下)学期)试卷及答案
- 小超市食品安全管理制度
- β内酰胺类抗菌药物皮肤试验指导原则2024课件
- 全过程工程咨询管理服务方案投标方案(技术方案)
- 皮肤科进修后汇报
- 表观遗传学智慧树知到期末考试答案章节答案2024年东北师范大学
- 兰州大学强基计划试题
- 供应商定期评价表(精简版)
- 四川省凉山彝族自治州西昌市2024年小升初总复习数学测试题含解析
- TD/T 1014-2007 第二次土地调查技术规程(正式版)
- 《电力变压器有载分接开关机械特性的声纹振动分析法》
评论
0/150
提交评论