![教程文案详解highly porous hydrotalcite like film growth anodised aluminium monoliths_第1页](http://file4.renrendoc.com/view/35e5366b1c1673699854fd245082a994/35e5366b1c1673699854fd245082a9941.gif)
![教程文案详解highly porous hydrotalcite like film growth anodised aluminium monoliths_第2页](http://file4.renrendoc.com/view/35e5366b1c1673699854fd245082a994/35e5366b1c1673699854fd245082a9942.gif)
![教程文案详解highly porous hydrotalcite like film growth anodised aluminium monoliths_第3页](http://file4.renrendoc.com/view/35e5366b1c1673699854fd245082a994/35e5366b1c1673699854fd245082a9943.gif)
![教程文案详解highly porous hydrotalcite like film growth anodised aluminium monoliths_第4页](http://file4.renrendoc.com/view/35e5366b1c1673699854fd245082a994/35e5366b1c1673699854fd245082a9944.gif)
![教程文案详解highly porous hydrotalcite like film growth anodised aluminium monoliths_第5页](http://file4.renrendoc.com/view/35e5366b1c1673699854fd245082a994/35e5366b1c1673699854fd245082a9945.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
10thInternationalSymposium“ScientificBasesforthePreparationofHeterogeneousE.M.Gaigneaux,M.Devillers,S.Hermans,P.Jacobs,J.MartensandP.Ruiz©2010ElsevierB.V.sHighlyporoushydrotalci ikefilmgrowthonanodisedaluminiummonolithsF.JavierEchavea,OihaneSanzb,*, anoC.Almeidaa,JoséAntonioOdriozolab,MarioMontesaaAppliedChemistryDepartment,UniversityoftheBasqueCountry(UPV-EHU),PaseoManueldeLardizabal3,20018SanSebastián,SpainbInorganicChemistryDepartmentandInstitutodeCienciadeMaterialesdeSevilla(CentroMixtoUS-CSIC),Avd.AméricoVespucio49,41092Sevilla,SpainCorrespondingauthor:oihane.sanz@ehu.esZ-aluminumhydrotalciikethinfiwerepreparedbydirectprecipitationonthesurfaceofAl2O3/Almonoliths.Themesoporesofanodicaluminaprovidedchannelsandnano-sizedwall-edgesforsupplyingAl3+andhighlyactivereactionsites.Inthiswork,theinfluenceoftemperature,timeandZn:NH3molarratiointheobtentionofhighlyhomogeneousandadherenthydrotalcitefiisstudied.Weshowthattheamountloaded,integrityandtexturalpropertiesoftheZn-Alhydrotalciikefilmarestronglyinfluencedbythepreparationconditions.ThepreparedmonolithsweretestedforVOCabatement(totaloxidationofethanolandethylacetate)showinggoodactivity.:Zn-Al ike,Al2O3/Almonolith,VOCcatalyticHigh-pressuredropandrandomandstructuralmaldistributioninpacked-bedreactorshavedriventhedevelopmentofstructuredcatalystsandreactors.Monolithiccatalysts,althoughpredominantlyusedinenvironmentalapplications,have ethemostcommonlyusedsortofchemicalreactorsfindingrelevantandeconomicallysignificantapplicationsinindustrialcatalysissofar.Thinwalls(lowerpressuredrops),thermalconductivityandmechanicalpropertiesofmetalsarekeypropertiesforchoosingmetallicmonoliths.Theformationof-Al2O3overlayersuponoxidationhasledtousemainlyAl-alloyedferriticsteelsfordesigningmetallicmonoliths.However,whentheworkingtemperatureisnotasdemandingasinautomotiveexhausts,aluminiumcanbeanexcellentstructuralmaterialthatuponanodizationiscoatedahighsurfaceareaaluminalayer,whileofferinggoodmechanicalandthermalproperties.Ontheotherhand,hydrotalcitematerials,oneofthemostusefullayeredinorganiccompounds,areusedinthepreparationofcatalyst,asenvironmentalmaterials,orasmatrixesfor positefi.TheobjectiveofthisworkistostudythegrowthofporoushydrotalciikefilmonanodizedaluminummonolithsforobtainingCu-Zn/Al2O3-Almonolithsasuitablecatalystinmanyindustrialprocesses. F.J.EchaveetPreparationofCuO-Zn/Al2O3-AlTheZn/Al2O3-Alstructureswerepreparedoncylindrical(3cmheight,1.6cmdiameter)Al2O3/Almonolithshaving350cpsiobtainedbyanodizingAlfoils[1]inoxalicacid(40ºC,2Adm-2and40min)andsubsequentpost-treatmentbyleavingthemonolithsintheelectrolyticbathat40Cfor40minwithoutelectriccurrent[2].Theresultingmonolithsweredriedat60ºCfor1handcalcinedat500ºCfor2h.TheZn–AlhydrotalciikefilmwaspreparedbydirectprecipitationbasedonthemethodproposedbyGaoetal.[3].Zacetate,1.3761g,wasdissolvedin500mLofdeionizedwater;tothissolutionammoniawasaddeduntilreachingthedesiredZn/ammoniamolarratio.Thisdissolutionwasheatedandstirredusinomonolithsfixedtothestirrerbladesensuringtheliquidflowlinespassedthroughthemonolithchannels.Temperature,timeandZn/ammoniamolarratiosareshowninTable1.Aftersynthesis,themonolithswerewashedanddriedat100ºCfor12handthencalcinedat400ºCfor4h.Cupperwasdepositedthesamewayasz,butinthiscaseammoniawasaddedtoformcopperammoniacomplex.NitrogenadsorptionisusedtodetermhetexturalpropertiesusingaMicromeriticsASAP2020withahomemadecellacceptingtheentire6cm3monoliths.FESEMwasusedtostudythemorphology(HITACHI5200).Adherenceofthecoatingwasmeasuredbytheultrasoundtest[4].Zandcupperamountsweredeterminedbyatomicabsorptionspectroscopy(GBCAvantaΣ).Thecatalyticactivityofthepreparedmonolithswasmeasuredforthecompleteoxidationofethylacetateandethanolinair.Ignitioncurveswereobtainedbyheatingupto400°Cat1.5°C/minthemonolithsina500ml/minairstreamcontainingVOCs,1000mgC/Nm3.VOCsconversionwascalculatedbymeasuringtheethylacetateorethanoldisappearancebyGC-TCD(HP5890)andtheCO2productionwithanonlineIRdetector(VaisalaGMT220).ResultsandThehighlyporousstructureoftheAl2O3-AlmonolithprovidesmultiplechannelsforsupplyingAl3+species(Fig.1AandB).MesoporewallsandedgesprovidesitesatwhichtheZn-Alhydrotalciikefiuccessfullygrowsup[5].Fig.1.FESEMimages.(A)Topand(B)la lviewofanodicalumina;(C)topand(D)viewofaluminalayercoatedwithZn-Alhydrotalci ike.Table1showstheamountloadedandthetexturalpropertiesofthemonolithspreparedatdifferentconditions.Onreasingtheamountofaddedammonia,temperatureandstirringtime,theamountloadedreases,aswellasthetotalsurfaceareaandporosityofthemonolith.However,theporesizedecreaseddrastically(Fig.2)andshortwhiskersappearedonthealuminaporewalls(Fig.1D).ThesewhiskersareHighlyporous ikefilmgrowthonanodisedaluminium mainlyaluminahardlycontainingZnasshownbyEDXysis.Toconfirmthatitwasjustamorphologicalchangeofthealuminacoating,monolithswerepreparedusingammoniumacetateinsteadofzacetate.Thesemonolithsshowedsimilartexturalchangesandwhiskersgrowthonthealuminapores.Wefers[6]observedtheformationofthistypeofstructure,composedofaluminumhydroxideandbohemite,byimmersingtheanodizedaluminiuminboilingdeionizedwater(sealingbyhydrotreatment).Thisphenomenonisattributedtoswellingofthealuminaduetohydration.Spooneretal.[7]suggestedthatthesealingisproducedbythedissolutionoftheoxideontheporewallsandtheirprecipitationneartheporemouth.TheFESEMimageinFigure1Cshowsthealuminalayercoveredwithet-likenanostructureswith>100nminthickness,resultinginahighlyporoussurface.Themorphologyofthenanostructureswasnotaffectedbysynthesisconditions,butthethicknessofthelayerthatreaseswiththeZn/NH3ratio,temperatureandtime.ThegrowthrateisconsiderablyhigherthanthosereportedonAlsubstrate[8]andAl2O3fi[3],andsimilartovaluesreportedonAl2O3membranes[5].Consequently,thisresultsuggeststhatporousanodicaluminaprovidesmoresitesforformationofZn-Alhydrotalciikefi[3].Table1.PropertiesofPreparation ( dnolithikeTextural ---3-3-3-3-1-6-3-3----3Theadhesionofthewashcoatingwasevaluatedmeasuringtheweightlossaftertheultrasoundtest.IngeneraltheadherenceisverypooranddependsontheamountofZn-Alhydrotalciikefilmloaded.Thehighertheamountloaded,thelowertheadherenceofthecoating.However,thecatalystadherencewasbetterthanthatreportedbySanzetal.[9]forPt-ZSM5/Al2O3-Almonolithpreparedbywashcoating.Thisinsitupreparationstrategyallowstodepositalargeamountofcatalystinanadherentformduetochemicalbondalthoughneedsapropermetalsurfacepreparation.ThebestresultsforhomogeneityandadherenceoftheZn-Alhydrotalci ikefiwereobtainedforsynthesiscarriedourat50ºC,3handZn/NH31:3,andthereforeTheCuOimpregnationwasperformedonthesemonoliths.CuOimpregnation reasedthespecificsurfaceareaandporositybutdecreasedtheporesizewithrespecttotheZn-Al/Al2O3-Almonoliths(Table1andFig.2).Furthermore,themorphologyoftheanodizedaluminadidnotchangeasobservedbySEM.Thecombustionofethylacetateandethanolwereusedtotestthepreparedcatalyticdevices.ThemonolithsactiveforVOCscombustion(Fig.3)andonlytotal FJ.Echaveetproducts,CO2andH2O,weredetectedundertheexperimentalconditionsemployedinthisstudy.TheconversionofVOCsstartsat200-250ºCandreaches100%conversionbelow300-360ºC.TheseresultsshowthatCuOadditionenhancestheVOCscombustionactivityofZn-Alhydrotalciikemonoliths,reducingthetotalconversion75C.VOCsnature.Oxidationofethanoliseasierthanthatofethylacetate.Thisbehaviouralsowasobservedwithbothnoblemetalastransitionmetal[10,11].Amongseveralmetaloxides,RajeshandOzkan[12]andYao[13]foundCuO/Al2O3tobethemostactivecatalystforthecompleteoxidationofethanol.PoreVolumeConversionto 0
100150200250300350TemperatureFig.2.Poresize Fig.3.VOCsignitionZn-Alhydrotalciikefilmhasbeendirectlygrownonthesurfaceofporousanodicaluminamonoliths.ThehighlyporousstructureoftheAl2O3-AlmonolithprovidedmultiplechannelsforsupplyingAl3+speciesandpromotedachemicalanchoringofthecoating.TheCuOwassuccessfullyimpregnatedonthehydrotalcitesurface.Inthisway,activecatalyticstructureshavebeenpreparedandtestedintotaloxidationofethanolandethylacetate.FinancialsupportbyMEC(MAT2006-12386-C05andFPUfellowshiptoF.J.E.)andUPV/EHU(GUI07/63)aregratefullyacknowledged.N.Burgos,M.A.Paulis,M.Montes,2003,J.Mater.Chem.,13,1458-P.Hoyer,K.Nishio,H.Masuda,1996,ThinSolid ,286,88-Y.F.Gao,M.Nagai,Y.Masuda,F.Sato,W.S.Seo,K.Koumoto,2006,Langmuir,22,3521-S.Yasaki,Y.Yoshino,K.Ihara,K.Ohkubo,USPatent5,208,206F.Yang,B.Y.Xie,J.Z.Sun,J.K.Jin,M.Wang,2008,MaterialsLetters,62,1302-K.Wefers,1973,Aluminium,49,8-9,553-R.C.Spooner,D.J.Forsyth,1970,Aluminum,46,165-J.A.Gursky,S.D.Blough,C.Luna,C.Gomez,A.N.Luevano,E.A.Gardner,2006,J.Am.Chem.Soc.,128,8376-8377O.Sanz,L.C.Almeida,J.M.Zamaro,M.A.Ulla,E.E.Miro,M.Montes,2008,App.Catal.B,78,166-175N.Burgos,M.Paulis,M.M.Antxustegi,M.Montes,2002,App.Catal.B,38,251-D.Delimaris,T.Ioannides,2008,App.Catal.B,84,303-H.Rajesh,U.S.Ozkan,1993,Ind.Eng.Chem.Res.,32,1622-Y.-F.Yu ,Ind.Eng.Chem.ProcessDes.Dev.,23,60-E.M.Gaigneaux、M.Devillers、S.Hermans、P.Jacobs、J.Martens和P.Ruiz(编辑)。2010ElsevierB.V. F.JavierEchavea、OihaneSanzb、*anoC.Almeidaa、JoséAntonioOdriozolab、MarioMontes、大学应用化学系(UPV-EHU)、PaseoManueldeLardizabal3,20018圣塞巴斯蒂安,西班牙b无机化学系和塞维利亚材料科学研究所(CentroMixtoUS-CSIC),Avd。AméricoVespucio49,41092Sevilla,Spain通讯作者:oihane.sanz@ehu.es 采用直接沉淀在Al2O3/Al整体材料表面的方法制备了类锌铝水滑石薄膜。阳极氧化铝的介孔提供了通道和纳米尺寸的壁边缘,用于供应Al3+和高活性反应位点。在这项工作中,研究了温度、时间和Zn:NH3摩尔比对获得高度均匀和粘附的水滑石薄膜的制备的整体材料经过VOC消除(乙醇和乙酸乙酯的完全氧化)测试,显示出良好的活性。α-Al2O3CuO-Zn/Al2O3-AlZn/Al2O3-Al(3cm1.6cm径)Al2O3/Al整体材料上制备的,该Al2O3/Al整体材料具有350cpsi,通过在草酸(40oC)中对铝箔[1]进行阳极氧化获得、2Adm-240分钟)以及随后的后处理,40oC402]601表征使用MicromeriticsASAP2020和接受整个6cm3整料的自制单元,使用氮气吸附来确定结构特性。FESEM用于研究形态(HITACHI5200)。通过超声波测试来测量涂层的附着力[4]。锌和铜的量通过原子吸收光谱法(GBCAvantaΣ)测定。测量了所制备的VOC、1000mgC/Nm3500ml/min1.5°C/min400°CGC-TCD(HP5890)测量乙酸乙酯或乙醇的消失量以及使用在线红外检测器(VaisalaGMT220)测量CO2的产生量来计算VOC转化率。3结果与讨论Al2O3-Al整料的高度多孔结构为供应Al3+物质提供了多个通道(图1A和B)。中和边缘提供了锌铝类水1.FESEM(A)俯视图和(B)(C)(D)Zn-增加,负载量以及整料的总表面积和孔隙率增加。然而,孔径急剧减小(2),并且氧化铝Wefers6(通过加氢处理1CFESEM>100nmAl[8]Al
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度搅拌机租赁与项目管理服务合同
- 2025年石材行业人才培养与输送合同
- 2025年度砖厂砖瓦产品销售与供应链管理合同
- 2025年度智慧农业发展规划技术服务合同
- 2025年度砖块智能制造生产线投资合作合同
- 2025年度船舶清洁与维护保养服务合同模板
- 2025年度汽车租赁服务加盟经营合同范本
- 2025年度农产品出口翻译服务合同
- 2025年度回迁房项目配套设施租赁管理服务合同
- 2025年度京东电商平台用户隐私保护合同
- 小红书食用农产品承诺书示例
- 二年级数学上册100道口算题大全(每日一练共12份)
- 人机料法环测检查表
- 中国数字货运发展报告
- 使用AVF血液透析患者的护理查房
- 《幼儿教师职业道德》教案
- 2021年高考山东卷化学试题(含答案解析)
- 客服百问百答
- GA/T 766-2020人精液PSA检测金标试剂条法
- 品管圈活动提高氧气雾化吸入注意事项知晓率
- 农产品质量安全控制课件
评论
0/150
提交评论