版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第05课平行线与相交线全章复习与巩固目标导航目标导航课程标准1.熟练掌握对顶角,邻补角及垂线的概念及性质,了解点到直线的距离与两平行线间的距离的概念;2.区别平行线的判定与性质,并能灵活运用;3.了解命题的概念及构成,并能通过证明或举反例判定命题的真假;4.了解平移的概念及性质.知识精讲知识精讲知识点01相交线1.对顶角、邻补角两直线相交所成的四个角中存在几种不同关系,它们的概念及性质如下表:图形顶点边的关系大小关系对顶角112∠1与∠2有公共顶点∠1的两边与∠2的两边互为反向延长线对顶角相等即∠1=∠2邻补角SKIPIF1<0有公共顶点∠3与∠4有一条公共边,另一边互为反向延长线.邻补角互补即∠3+∠4=180°注意:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角.对顶角的特征:有公共顶点,角的两边互为反向延长线.⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角.⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角.邻补角的特征:有公共顶点,有一条公共边,另一边互为反向延长线.⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个.2.垂线及性质、距离(1)垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.如图1所示,符号语言记作:AB⊥CD,垂足为O.注意:要判断两条直线是否垂直,只需看它们相交所成的四个角中,是否有一个角是直角,两条线段垂直,是指这两条线段所在的直线垂直.(2)垂线的性质:垂线性质1:在同一平面内,过一点有且只有一条直线与已知直线垂直(与平行公理相比较记).垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短.简称:垂线段最短.(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,如图2:PO⊥AB,点P到直线AB的距离是垂线段PO的长.注意:垂线段PO是点P到直线AB所有线段中最短的一条.知识点02平行线1.平行线判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.注意:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行.(2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性).(3)在同一平面内,垂直于同一直线的两条直线平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.注意:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.3.两条平行线间的距离如图3,直线AB∥CD,EF⊥AB于E,EF⊥CD于F,则称线段EF的长度为两平行线AB与CD间的距离.注意:(1)两条平行线之间的距离处处相等.(2)初中阶级学习了三种距离,分别是两点间的距离、点到直线距离、平行线间的距离.这三种距离的共同点在于都是线段的长度,它们的区别是两点间的距离是连接这两点的线段的长度,点到直线距离是直线外一点引已知直线的垂线段的长度,平行线间的距离是一条直线上的一点到与之平行的另一直线的距离.(3)如何理解“垂线段”与“距离”的关系:垂线段是一个图形,距离是线段的长度,是一个量,它们之间不能等同.知识点03命题及平移1.命题:判断一件事情的语句,叫做命题.每个命题都是题设、结论两部分组成.题设是已知事项;结论是由已知事项推出的事项.2.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移.注意:平移的性质:(1)平移后,对应线段平行(或共线)且相等;(2)平移后,对应角相等;(3)平移后,对应点所连线段平行(或共线)且相等;知识点04数学思想一、转化与化归思想【思想解读】转化思想是把一种待解决的问题经过某种转化,归类到已经解决的问题中去.转化思想在解数学题时,所给条件往往不能直接应用,此时需要将所给条件进行转化,在解题中经常用到,它包括未知向已知的转化,陌生向熟悉的转化,复杂向简单的转化,抽象向具体的转化;数与形的转化等.【应用链接】在证明线的位置关系或有关角度计算时,常利用平行线的性质把没有关联的角转化为对顶角或邻补角之间的关系进行处理,反之把具有对顶角或邻补角关系转化为在同一个“三线八角”图形结构中进行处理.【典例1】如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是________.【详解】如图,延长AE交BC于点F,因为AB∥CD,∠C=120°,所以∠B=60°,又因为BC∥DE,所以∠AED=∠AFC=∠B+∠A=60°+20°=80°.答案:80°【即学即练1】如图,已知∠1+∠2=180°,∠B=∠3,你能判断∠C与∠AED的大小关系吗?并说明理由.【解析】∠C与∠AED相等,理由为:∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义),∴∠2=∠DFE(同角的补角相等),∴AB∥EF(内错角相等,两直线平行),∴∠3=∠ADE(两直线平行,内错角相等),又∠B=∠3(已知),∴∠B=∠ADE(等量代换),∴DE∥BC(同位角相等,两直线平行),∴∠C=∠AED(两直线平行,同位角相等).二、分类讨论思想【思想解读】分类讨论思想是一种常见的数学思想方法.具体来说,就是把包含多种可能情况的问题,按照某一标准分成若干类,然后对每一类分别进行解决.【应用链接】在几何问题中,涉及到图形之间的位置关系不定时,需要应用分情况讨论问题的方法.【典例2】如图,AD∥BC,当点P在射线OM上运动时(点P与点A,B,O三点不重合),∠ADP=∠α,∠BCP=∠β,求∠CPD与∠α,∠β之间有何数量关系?请说明理由.世纪金榜导学号91904134【详解】分三种情况进行讨论:①当点P在A,B两点之间运动时,∠CPD=∠α+∠β.理由如下:如图(1),过点P作PE∥AD交CD于点E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β.②当点P在BA延长线上时,∠CPD=∠β-∠α.理由如下:如图(2),过点P作PE∥AD交CD于点E.同①可知∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠β-∠α.③当点P在AB延长线上时,∠CPD=∠α-∠β.理由如下:如图(3),过点P作PE∥AD交CD于点E.同②可知∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠α-∠β.【即学即练2】如图,在Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,点D在边OA上,将图中的△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第________秒时,边CD恰好与边AB平行.【解析】①两三角形在点O的同侧时,如图1,设CD与OB相交于点E,∵AB∥CD,∴∠CEO=∠B=40°,∵∠C=60°,∠COD=90°,∴∠D=90°-60°=30°,∴∠DOE=∠CEO-∠D=40°-30°=10°,∴旋转角∠AOD=∠AOB+∠DOE=90°+10°=100°.∵每秒旋转10°,∴时间为100°÷10°=10(秒).②两三角形在点O的异侧时,如图2,延长BO与CD相交于点E,∵AB∥CD,∴∠CEO=∠B=40°,∵∠C=60°,∠COD=90°,∴∠D=90°-60°=30°,∴∠DOE=∠CEO-∠D=40°-30°=10°,∴旋转角为270°+10°=280°,∵每秒旋转10°,∴时间为280°÷10°=28(秒),综上所述,在第10或28秒时,边CD恰好与边AB平行.答案:10或28三、方程思想【思想解读】方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),将问题中的已知量和未知量之间的数量关系通过适当设元建立起方程(组),然后通过解方程(组)或不等式(组)来使问题获解的思维方式.【应用链接】在应用垂直、角平分线或角度之间的比值进行角度的计算时,常用方程的思想,构建方程解决问题.【典例3】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025石材长期采购合同
- 2025年度国防科技产业核心秘密保护合同3篇
- 2025年度远程教育兼职教师聘任合同3篇
- 2025年度农村房屋买卖合同协议书(含农村电商合作)2篇
- 2025年度公司公务车借用及维修保养协议范本3篇
- 二零二五年度企业核心高管聘用合同:企业战略转型升级合作协议3篇
- 2025农村宅基地置换项目宅基地置换补偿评估协议
- 2025年度婚姻财产保全与风险评估协议3篇
- 二零二五年度老旧小区电梯加装工程合同3篇
- 二零二五年度特色农业机械租赁合作框架协议2篇
- 红色经典影片与近现代中国发展学习通超星期末考试答案章节答案2024年
- 山东省东营市(2024年-2025年小学四年级语文)统编版期末考试(上学期)试卷及答案
- 期末+(试题)+-2024-2025学年重大版英语五年级上册
- DL∕ Z 860.2-2006 变电站通信网络和系统 第2部分:术语
- 断亲协议书模板
- 技能成才强国有我课件模板
- “双减”背景下小学数学“教、学、评”一体化的思考与实践
- 中外美术评析与欣赏智慧树知到期末考试答案章节答案2024年湖南大学
- 事业单位考试《综合知识和能力测试》试卷
- 福利住房与购房补贴制度
- 康师傅乌龙茗茶营销策划书
评论
0/150
提交评论