上海市八中2022-2023学年数学高二下期末教学质量检测试题含解析_第1页
上海市八中2022-2023学年数学高二下期末教学质量检测试题含解析_第2页
上海市八中2022-2023学年数学高二下期末教学质量检测试题含解析_第3页
上海市八中2022-2023学年数学高二下期末教学质量检测试题含解析_第4页
上海市八中2022-2023学年数学高二下期末教学质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在正方体中,过对角线的一个平面交于,交于得四边形,则下列结论正确的是()A.四边形一定为菱形B.四边形在底面内的投影不一定是正方形C.四边形所在平面不可能垂直于平面D.四边形不可能为梯形2.已知随机变量X的分布列如下表所示则的值等于A.1 B.2 C.3 D.43.函数的图象恒过定点A,若点A在直线上,其中m,n均大于0,则的最小值为()A.2 B.4 C.8 D.164.的值等于()A.1 B.-1 C. D.5.若y=fx在-∞,+∞可导,且lim△x→0fA.23 B.2 C.3 D.6.随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.非一线城市一线城市总计愿生452065不愿生132235总计5842100附表:0.0500.0100.0013.8416.63510.828由算得,,参照附表,得到的正确结论是()A.在犯错误的概率不超过的前提下,认为“生育意愿与城市级别有关”B.在犯错误的概率不超过的前提下,认为“生育意愿与城市级别无关”C.有以上的把握认为“生育意愿与城市级别有关”D.有以上的把握认为“生育意愿与城市级别无关”7.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是()2017201620152014……654321403340314029…………11975380648060………………201612816124……362820………A. B.C. D.8.同学聚会上,某同学从《爱你一万年》,《十年》,《父亲》,《单身情歌》四首歌中选出两首歌进行表演,则《爱你一万年》未选取的概率为()A.B.C.D.9.将点的极坐标化成直角坐标为()A. B. C. D.10.设集合,,,则中的元素个数为()A. B. C. D.11.某单位从6男4女共10名员工中,选出3男2女共5名员工,安排在周一到周五的5个夜晚值班,每名员工值一个夜班且不重复值班,其中女员工甲不能安排在星期一、星期二值班,男员工乙不能安排在星期二值班,其中男员工丙必须被选且必须安排在星期五值班,则这个单位安排夜晚值班的方案共有()A.960种 B.984种 C.1080种 D.1440种12.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A.1盏 B.3盏C.5盏 D.9盏二、填空题:本题共4小题,每小题5分,共20分。13.已知,则实数_______.14.若随机变量,且,则__________.15.已知定义在实数集上的偶函数在区间上是增函数.若存在实数,对任意的,都有,则正整数的最大值为__________.16.若关于的不等式的解集是空集,则实数的取值范围是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列满足:,.的前n项和为.(Ⅰ)求及;(Ⅱ)令(),求数列的前项和.18.(12分)在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l上两点M,N的极坐标分别为(2,0),(),圆C的参数方程(θ为参数).(Ⅰ)设P为线段MN的中点,求直线OP的平面直角坐标方程;(Ⅱ)判断直线l与圆C的位置关系.19.(12分)设函数的部分图象如图所示.(1)求函数的解析式;(2)当时,求的取值范围.20.(12分)假设关于某设备的使用年限(年)和所支出的年平均维修费用(万元)(即维修费用之和除以使用年限),有如下的统计资料:(1)求关于的线性回归方程;(2)估计使用年限为10年时所支出的年平均维修费用是多少?参考公式:21.(12分)解关于的不等式.22.(10分)已知函数,其导函数的两个零点为和.(I)求曲线在点处的切线方程;(II)求函数的单调区间;(III)求函数在区间上的最值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】对于A,当与两条棱上的交点都是中点时,四边形为菱形,故A错误;对于B,四边形在底面内的投影一定是正方形,故B错误;对于C,当两条棱上的交点是中点时,四边形垂直于平面,故C错误;对于D,四边形一定为平行四边形,故D正确.故选:D2、A【解析】

先求出b的值,再利用期望公式求出E(X),再利用公式求出.【详解】由题得,所以所以.故答案为:A【点睛】(1)本题主要考查分布列的性质和期望的计算,意在考查学生对这些知识的掌握水平和分析推理能力.(2)若(a、b是常数),是随机变量,则也是随机变量,,.3、C【解析】

试题分析:根据对数函数的性质先求出A的坐标,代入直线方程可得m、n的关系,再利用1的代换结合均值不等式求解即可.解:∵x=﹣2时,y=loga1﹣1=﹣1,∴函数y=loga(x+3)﹣1(a>0,a≠1)的图象恒过定点(﹣2,﹣1)即A(﹣2,﹣1),∵点A在直线mx+ny+1=0上,∴﹣2m﹣n+1=0,即2m+n=1,∵mn>0,∴m>0,n>0,=()(2m+n)=4+++2≥4+2•=8,当且仅当m=,n=时取等号.故选C.考点:基本不等式在最值问题中的应用.4、B【解析】

根据复数的计算方法,可得的值,进而可得,可得答案.【详解】解:根据复数的计算方法,可得,则,故选:.【点睛】本题考查复数的混合运算,解本题时,注意先计算括号内,再来计算复数平方,属于基础题.5、D【解析】

根据导数的定义进行求解即可.【详解】∵lim△x→0∴23即23则f'故选D.【点睛】本题主要考查导数的计算,根据导数的极限定义进行转化是解决本题的关键.6、C【解析】K2≈9.616>6.635,∴有99%以上的把握认为“生育意愿与城市级别有关”,本题选择C选项.点睛:独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.7、B【解析】

数表的每一行都是等差数列,从右到左,第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,第2016行只有M,由此可得结论.【详解】由题意,数表的每一行都是等差数列,从右到左,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,故从右到左第1行的第一个数为:2×2﹣1,从右到左第2行的第一个数为:3×20,从右到左第3行的第一个数为:4×21,…从右到左第n行的第一个数为:(n+1)×2n﹣2,第2017行只有M,则M=(1+2017)•22015=2018×22015故答案为:B.【点睛】本题主要考查归纳与推理,意在考查学生对这些知识的掌握水平和分析推理能力.8、B【解析】,所以选B.9、C【解析】

利用极坐标与直角坐标方程互化公式即可得出.【详解】x=cos,y=sin,可得点M的直角坐标为.故选:C.【点睛】本题考查了极坐标与直角坐标方程互化公式,考查了推理能力与计算能力,属于基础题.10、C【解析】分析:由题意列表计算所有可能的值,然后结合集合元素的互异性确定集合M,最后确定其元素的个数即可.详解:结合题意列表计算M中所有可能的值如下:2341234246836912观察可得:,据此可知中的元素个数为.本题选择C选项.点睛:本题主要考查集合的表示方法,集合元素的互异性等知识,意在考查学生的转化能力和计算求解能力.11、A【解析】分五类:(1)甲乙都不选:;(2)选甲不选乙:;(3)选乙不选甲:;(4)甲乙都选:;故由加法计数原理可得,共种,应选答案A。点睛:解答本题的关键是深刻充分理解题意,灵活运用排列数、组合数公式及分步计数原理和分类计数原理两个基本原理。求解依据题设条件将问题分为四类,然后运用排列数、组合数公式及分步计数原理和分类计数原理两个基本原理求出问题的答案,使得问题获解。12、B【解析】

设塔顶的a1盏灯,由题意{an}是公比为2的等比数列,∴S7==181,解得a1=1.故选B.二、填空题:本题共4小题,每小题5分,共20分。13、2或【解析】

先求得,解即可得解.【详解】=解得故答案为2或【点睛】本题考查了复数的模的计算,属于基础题.14、【解析】

由条件求得,可得正态分布曲线的图象关于直线对称.求得的值,根据对称性,即可求得答案.【详解】随机变量,且,可得,正态分布曲线的图象关于直线对称.,故答案为:.【点睛】本题考查了正态分布曲线的特点及曲线所表示的意义,考查了分析能力和计算能力,属于基础题.15、【解析】分析:先根据单调性得对任意的都成立,再根据实数存在性得,即得,解得正整数的最大值.详解:因为偶函数在区间上是增函数,对任意的,都有,所以对任意的都成立,因为存在实数,所以即得,因为成立,,所以正整数的最大值为4.点睛:对于求不等式成立时的参数范围问题,一般有三个方法,一是分离参数法,使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件.16、(-∞,6]【解析】由题意可设,则当时,;当时,;当时,不等式可化为。在平面直角坐标系中画出函数的图像如图,结合图像可知当,不等式的解集是空集,则实数的取值范围是,应填答案。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】试题分析:(1)设等差数列的公差为,由已知可得解得,则及可求;(2)由(1)可得,裂项求和即可试题解析:(1)设等差数列的公差为,因为,,所以有,解得,所以,.(2)由(1)知,,所以,所以,即数列的前项和.考点:等差数列的通项公式,前项和公式.裂项求和18、见解析【解析】

(Ⅰ)设P为线段MN的中点,求直线OP的平面直角坐标方程;(Ⅱ)求出圆的圆心与半径,判断圆心与直线的距离与半径的关系,即可判断直线l与圆C的位置关系.【详解】解:(Ⅰ)M,N的极坐标分别为(2,1),(),所以M、N的直角坐标分别为:M(2,1),N(1,),P为线段MN的中点(1,),直线OP的平面直角坐标方程y;(Ⅱ)圆C的参数方程(θ为参数).它的直角坐标方程为:(x﹣2)2+(y)2=4,圆的圆心坐标为(2,),半径为2,直线l上两点M,N的极坐标分别为(2,1),(),方程为y(x﹣2)(x﹣2),即x+3y﹣21.圆心到直线的距离为:2,所以,直线l与圆C相交.【点睛】本题考查圆的参数方程,极坐标方程与直角坐标方程的转化,直线与圆的位置关系,考查计算能力.19、(1);(2).【解析】试题分析:(1)由题意结合三角函数的周期可得,结合,则,函数的解析式为.(2)由函数的定义域可得,则函数的值域为.试题解析:(1)由图象知,即.又,所以,因此.又因为点,所以,即,又,所以,即.(2)当时,,所以,从而有.20、(1);(2)万元【解析】

(1)先求出样本中心点及代入公式求得,再将代入回归直线求得的值,可得线性回归方程;(2)在(1)中求得的线性回归方程中,取x=10,求得y值得答案.【详解】(1)由题表数据可得,由公式可得,即回归方程是.(2)由(1)可得,当时,;即,使用年限为10年时所支出的年平均维修费用是万元.【点睛】本题考查线性回归方程,考查计算能力,是基础题.21、当时,不等式的解集为;当时,不等式的解集为或;当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为.【解析】

将原不等式因式分解化为,对参数分5种情况讨论:,,,,,分别解不等式.【详解】解:原不等式可化为,即,①当时,原不等式化为,解得,②当时,原不等式化为,解得或,③当时,原不等式化为.当,即时,解得;当,即时,解得满足题意;当,即时,解得.综上所述,当时,不等式的解集为;当时,不等式的解集为或;当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为.【点睛】本题考查含参不等式的求解,求解时注意分类讨论思想的运用,对分类时要做到不重不漏的原则,同时最后记得把求得的结果进行综合表述.22、(I);(II)增区间是,,减区间是;(III)最大值为,最小值为.【解析】试题分析:对函数求导

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论