苏科版数学七年级上册3.2代数式 素养提升练(含解析)_第1页
苏科版数学七年级上册3.2代数式 素养提升练(含解析)_第2页
苏科版数学七年级上册3.2代数式 素养提升练(含解析)_第3页
苏科版数学七年级上册3.2代数式 素养提升练(含解析)_第4页
苏科版数学七年级上册3.2代数式 素养提升练(含解析)_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第页苏科版数学七年级上册3.2代数式素养提升练(含解析)第3章代数式

3.2代数式

基础过关全练

知识点1代数式的概念

1.(2023江苏扬州期中)下列各式书写符合要求的是()

A.2x-3÷-yB.1ab

C.mn×3D.-

2.(2023江苏无锡期中)下列各式中不属于代数式的是()

A.-1B.

C.a2+abD.m=

知识点2列代数式

3.a是一个三位数,b是一个一位数,把a放在b的右边组成一个四位数,这个四位数是()

A.baB.100b+a

C.1000b+aD.10b+a

4.【教材变式·P72T1】设n为整数,则任意偶数可表示为,任意奇数可表示为,能被5整除的数可表示为.

5.【教材变式·P73T2】用代数式表示:

(1)个位数字为a,十位数字为b的两位数;

(2)x,y两数的差的平方;

(3)a,b两数的平方差;

(4)某商品的原价是a元/件,提价10%后的价格;

(5)某工人每小时做b个零件,完成m个零件所用的时间.

知识点3单项式、多项式及整式

6.【新独家原创】下列说法中错误的是()

A.的次数是3

B.x2-2x-1是二次三项式

C.2x-3x2+7的二次项系数是-3

D.23a2b3的次数是8

7.(2022江苏南通海门期末)下列说法正确的是()

A.-3ab2的系数是-3a

B.4a3b的次数是3

C.2a+b-1的各项分别是2a,b,-1

D.多项式x2-x+1是三次三项式

8.(2023江苏镇江期末)若3xa+1-b+2是一个四次单项式,则(-b)a=()

A.9B.-9C.8D.-8

9.已知关于x的整式(|k|-3)x3+(k-3)x2-k.

(1)若此整式是单项式,求k的值;

(2)若此整式是二次多项式,求k的值.

能力提升全练

10.(2022四川攀枝花中考,2,★☆☆)下列各式不是单项式的为()

A.3B.aC.D.x2y

11.(2023海南中考,3,★☆☆)下列整式中,是二次单项式的是()

A.x2+1B.xy

C.x2yD.-3x

12.(2022江苏苏州常熟期末,3,★☆☆)多项式-5xy+xy2-1是()

A.二次三项式B.三次三项式

C.二次二项式D.四次三项式

13.【规律探究题】(2022山东济宁中考,10,★★☆)如图,用相同的圆点按照一定的规律拼出图形.第一幅图有4个圆点,第二幅图有7个圆点,第三幅图有10个圆点,第四幅图有13个圆点,……,按照此规律,第一百幅图中圆点的个数是()

A.297B.301C.303D.400

14.(2023山东滨州中考,19,★★☆)观察下列各式:a1=,a2=,a3=,

a4=,a5=,……,

根据其中的规律可得an=(用含n的代数式表示).

素养探究全练

15.【规律探究题】【推理能力】(2023江苏泰州期末)研究下列算式,你会发现有什么规律

①13=12;

②13+23=32;

③13+23+33=62;

④13+23+33+43=102;

⑤13+23+33+43+53=152;

……

(1)根据以上算式的规律,请你写出第⑥个算式;

(2)用含n(n为正整数)的式子表示第〇n个算式;

(3)请用上述规律计算:73+83+93+103.

答案全解全析

基础过关全练

1.D选项A正确的书写是2x-;选项B正确的书写是ab;选项C正确的书写是3mn;选项D正确.

2.D-1是单独的一个数字,是代数式;是代数式;a2+ab是代数式;m=是等式,不是代数式.

3.C把a放在b的右边,则b扩大为原来的1000倍,a不变,所以这个四位数是1000b+a.

4.2n;2n+1(或2n-1);5n

解析偶数都是2的整数倍;奇数都是与偶数相邻的数;能被5整除的数都是5的整数倍.

5.解析(1)10b+a.

(2)(x-y)2.

(3)a2-b2.

(4)[(1+10%)a]元/件.

(5)小时.

6.D的次数是3,选项A正确;x2-2x-1是二次三项式,选项B正确;2x-3x2+7的二次项系数是-3,选项C正确;23a2b3的次数是5,选项D错误.

7.C-3ab2的系数是-3;4a3b的次数是4;2a+b-1的各项分别是2a,b,-1;多项式x2-x+1是二次三项式.

8.D因为3xa+1-b+2是一个四次单项式,所以-b+2=0,a+1=4,

解得a=3,b=2,则(-b)a=(-2)3=-8.

9.解析(1)∵关于x的整式(|k|-3)x3+(k-3)x2-k是单项式,

∴|k|-3=0且k-3=0,

解得k=3,∴k的值是3.

(2)∵关于x的整式(|k|-3)x3+(k-3)x2-k是二次多项式,

∴|k|-3=0且k-3≠0,解得k=-3,

∴k的值是-3.

能力提升全练

10.C表示数字与字母的乘积的式子叫单项式,单独的一个数或字母也叫单项式.选项C表示字母与字母的商,故不是单项式.

11.Bx2+1是多项式;xy是二次单项式;x2y的次数是3;-3x的次数是1.

12.B多项式-5xy+xy2-1由三个单项式构成,次数最高的单项式xy2的次数是3,所以是三次三项式.

13.B拼第1幅图需要4个圆点,即4+3×0;拼第2幅图需要7个圆点,即4+3=4+3×1;拼第3幅图需要10个圆点,即4+3+3=4+3×2;拼第4幅图需要13个圆点,即4+3+3+3=4+3×3;……,则第n幅图中圆点的个数为4+3(n-1)=3n+1,

所以第100幅图中圆点的个数为3×100+1=301.

解析所给分数的分母依次为3,5,7,9,11,…,所以第n项的分母是2n+1;分子依次为2,3,10,15,26,….变化规律为奇数项的分子是n2+1,偶数项的分子是n2-1,即第n项的分子是n2+(-1)n+1,所以an=.

素养探究全练

15.解析(1)①当n=1时,13=12,即13=,

②n=2时,13+23=32,即13+23=,

③n=3时,13+23+33=62,即13+23+33=,

④n=4时,13+23+33+43=102,

即13+23+33+43=,

⑤n=5时,13+23+33+43+53=152,

即13+23+33+43+53=,

∴当n=6时,

13+23+33+43+53+63==212,

故第⑥个算式为13+23

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论