山东省枣庄三中2022-2023学年高二数学第二学期期末监测模拟试题含解析_第1页
山东省枣庄三中2022-2023学年高二数学第二学期期末监测模拟试题含解析_第2页
山东省枣庄三中2022-2023学年高二数学第二学期期末监测模拟试题含解析_第3页
山东省枣庄三中2022-2023学年高二数学第二学期期末监测模拟试题含解析_第4页
山东省枣庄三中2022-2023学年高二数学第二学期期末监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设为随机变量,,若随机变量的数学期望,则等于()A. B.C. D.2.从10名男生6名女生中任选3人参加竞赛,要求参赛的3人中既有男生又有女生,则不同的选法有()种A.1190 B.420 C.560 D.33603.设是边长为的正三角形,是的中点,是的中点,则的值为()A. B. C. D.4.某中学从4名男生和3名女生中推荐4人参加某高校自主招生考试,若这4人中必须既有男生又有女生,则不同的选法共有()A.34种 B.35种 C.120种 D.140种5.已知函数存在零点,且,则实数的取值范围是()A. B.C. D.6.甲、乙两位同学各自独立地解答同一个问题,他们能够正确解答该问题的概率分别是25和12A.27 B.15 C.27.如果f(n)∈N+),那么f(n+1)-f(n)等于()A. B. C. D.8.某学习小组有名男生和名女生,现从该小组中先后随机抽取两名同学进行成果展示,则在抽到第个同学是男生的条件下,抽到第个同学也是男生的概率为()A. B. C. D.9.曲线对称的曲线的极坐标方程是()A. B. C. D.10.一位母亲根据儿子岁身高的数据建立了身高与年龄(岁)的回归模型,用这个模型预测这个孩子岁时的身高,则正确的叙述是()A.身高在左右 B.身高一定是C.身高在以上 D.身高在以下11.z是z的共轭复数,若z+z=2,(z-zA.1+i B.-1-i C.-1+i D.1-i12.已知数据的中位数为,众数为,平均数为,方差为,则下列说法中,错误的是()A.数据的中位数为B.数据的众数为C.数据的平均数为D.数据的方差为二、填空题:本题共4小题,每小题5分,共20分。13.若,关于的不等式恒成立,则实数的取值范围是___.14.已知数据的方差为1,则数据的方差为____.15.三个元件正常工作的概率分别为,,,将两个元件并联后再和串联接入电路,如图所示,则电路不发生故障的概率为_________.16.已知三棱锥的底面是等腰三角形,,底面,,则这个三棱锥内切球的半径为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在一次考试中某班级50名学生的成绩统计如表,规定75分以下为一般,大于等于75分小于85分为良好,85分及以上为优秀.经计算样本的平均值,标准差.为评判该份试卷质量的好坏,从其中任取一人,记其成绩为,并根据以下不等式进行评判①;②;③评判规则:若同时满足上述三个不等式,则被评为优秀试卷;若仅满足其中两个不等式,则被评为合格试卷;其他情况,则被评为不合格试卷.(1)试判断该份试卷被评为哪种等级;(2)按分层抽样的方式从3个层次的学生中抽出10名学生,再从抽出的10名学生中随机抽出4人进行学习方法交流,用随机变量表示4人中成绩优秀的人数,求随机变量的分布列和数学期望.18.(12分)已知公差不为零的等差数列满足,且,,成等比数列.(1)求数列的通项公式;(2)若,且数列的前项和为,求证:.19.(12分)已知函数.(1)当时,求的解集;(2)若恒成立,求实数的取值范围.20.(12分)数列的前项和为,且满足.(Ⅰ)求,,,的值;(Ⅱ)猜想数列的通项公式,并用数学归纳法证明你的结论.21.(12分)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当中()的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.22.(10分)已知函数,.(1)当时,求在上的最大值和最小值:(2)若,恒成立,求a的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

根据解得,所以.【详解】因为,得,即.所以.故选【点睛】本题主要考查二项分布,同时考查了数学期望,熟记公式是解题的关键,属于简单题.2、B【解析】

根据分类计数原理和组合的应用即可得解.【详解】要求参赛的3人中既有男生又有女生,分为两种情况:第一种情况:1名男生2名女生,有种选法;第二种情况:2名男生1名女生,有种选法,由分类计算原理可得.故选B.【点睛】本题考查分类计数原理和组合的应用,属于基础题.3、D【解析】

将作为基向量,其他向量用其表示,再计算得到答案.【详解】设是边长为的正三角形,是的中点,是的中点,故答案选D【点睛】本题考查了向量的乘法,将作为基向量是解题的关键.4、A【解析】分析:根据题意,选用排除法,分3步,①计算从7人中,任取4人参加志愿者活动选法,②计算选出的全部为男生或女生的情况数目,③由事件间的关系,计算可得答案.详解:分3步来计算,

①从7人中,任取4人参加志愿者活动,分析可得,这是组合问题,共C74=35种情况;

②选出的4人都为男生时,有1种情况,因女生只有3人,故不会都是女生,

③根据排除法,可得符合题意的选法共35-1=34种;

故选A.点睛:本题考查计数原理的运用,注意对于本类题型,可以使用排除法,即当从正面来解所包含的情况比较多时,则采取从反面来解,用所有的结果减去不合题意的结果.5、D【解析】

令,可得,设,求得导数,构造,求得导数,判断单调性,即可得到的单调性,可得的范围,即可得到所求的范围.【详解】由题意,函数,令,可得,设,则,由的导数为,当时,,则函数递增,且,则在递增,可得,则,故选D.【点睛】本题主要考查了函数的零点问题解法,注意运用转化思想和参数分离,考查构造函数法,以及运用函数的单调性,考查运算能力,属于中档题.6、A【解析】

设事件A表示“甲能回答该问题”,事件B表示“乙能回答该问题”,事件C表示“这个问题被解答”,则P(A)=0.4,P(B)=0.5,求出P(C)=P(AB)+P(AB)+P(AB)=0.7【详解】设事件A表示“甲能回答该问题”,事件B表示“乙能回答该问题”,事件C表示“这个问题被解答”,则P(A)=0.4,P(B)=0.5,P(C)=P(AB)+P(AB)+P(AB)=0.2+0.3+0.2=0.7∴在这个问题已被解答的条件下,甲乙两位同学都能正确回答该问题的概率:P(AB|C)=P(AB)故选:A【点睛】本题考查条件概率的求法,是基础题,解题时要认真审题,注意等可能事件概率公式的合理运用.7、D【解析】分析:直接计算f(n+1)-f(n).详解:f(n+1)-f(n)故答案为D.点睛:(1)本题主要考查函数求值,意在考查学生对该知识的掌握水平.(2)不能等于,因为前面还有项没有减掉.8、C【解析】

设事件A表示“抽到个同学是男生”,事件B表示“抽到的第个同学也是男生”,则,,由此利用条件概率计算公式能求出在抽到第个同学是男生的条件下,抽到第个同学也是男生的概率.【详解】设事件A表示“抽到个同学是男生”,事件B表示“抽到的第个同学也是男生”,则,,则在抽到第个同学是男生的条件下,抽到第个同学也是男生的概率.故选:C【点睛】本题考查了条件概率的求法、解题的关键是理解题干,并能分析出问题,属于基础题.9、A【解析】

先把两曲线极坐标方程化为普通方程,求得对称曲线,再转化为极坐标方程。【详解】化为标准方程可知曲线为,曲线为,所以对称直线为,化为极坐标方程为,选A.【点睛】由直角坐标与极坐标互换公式,利用这个公式可以实现直角坐标与极坐标的相互转化。10、A【解析】

由线性回归方程的意义得解.【详解】将代入线性回归方程求得由线性回归方程的意义可知是预测值,故选.【点睛】本题考查线性回归方程的意义,属于基础题.11、D【解析】试题分析:设z=a+bi,z=a-bi,依题意有2a=2,-2b=2,故考点:复数概念及运算.【易错点晴】在复数的四则运算上,经常由于疏忽而导致计算结果出错.除了加减乘除运算外,有时要结合共轭复数的特征性质和复数模的相关知识,综合起来加以分析.在复数的四则运算中,只对加法和乘法法则给出规定,而把减法、除法定义为加法、乘法的逆运算.复数代数形式的运算类似多项式的运算,加法类似合并同类项;复数的加法满足交换律和结合律,复数代数形式的乘法类似多项式乘以多项式,除法类似分母有理化;用类比的思想学习复数中的运算问题.12、D【解析】

利用中位数、众数、平均数、方差的性质求解.【详解】若数据的中位数为,众数为,平均数为,则由性质知数据的中位数,众数,平均数均变为原来的2倍,故正确;则由方差的性质知数据的方差为4p,故D错误;故选D.【点睛】本题考查中位数、众数、平均数、方差的应用,解题时要认真审题,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

对不等式进行因式分解,,利用分离变量法转化为对应函数最值,即得到答案.【详解】,即:恒成立所以故答案为【点睛】本题考查了不等式恒成立问题,因式分解是解题的关键.14、9【解析】

根据方差的线性变化公式计算:方差为,则的方差为.【详解】因为方差为,则的方差为,【点睛】本题考查方差的线性变化,难度较易.如果已知方差为,则的方差为,这可用于简便计算方差.15、【解析】分析:组成的并联电路可从反面计算,即先计算发生故障的概率,然后用对立事件概率得出不发生故障概率.详解:由题意.故答案为.点睛:零件不发生故障的概率分别为,则它们组成的电路中,如果是串联电路,则不发生故障的概率易于计算,即为,如果组成的是并联电路,则发生故障的概率易于计算,即为.16、【解析】分析:利用等体积法,设内切球半径为r,则r(S△ABC+S△PAC+S△PAB+S△PCB)=×PA•S△ABC,解得求出r,再根据球的体积公式即可求出.详解:∵AB⊥AC,PA⊥底面ABC,PA=AB=1,∴∴S△ABC=×AC×BC=×1×1=,S△PAC=×AC×PA=S△PAB=×AB×PA=,S△PCB==,∴VP﹣ABC=×PA•S△ABC=,设内切球半径为r,则r(S△ABC+S△PAC+S△PAB+S△PCB)=×PA•S△ABC,解得r=.故答案为.点睛:(1)本题主要考查几何体的内切球问题,意在考查学生对这些知识的掌握水平和空间想象能力分析推理能力.(2)求几何体的内切球的半径一般是利用割补法和等体积法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)该份试卷应被评为合格试卷;(2)见解析【解析】

(1)根据频数分布表,计算,,的值,由此判断出“该份试卷应被评为合格试卷”.(2)利用超几何分布分布列计算公式,计算出分布列,并求得数学期望.【详解】(1),,,因为考生成绩满足两个不等式,所以该份试卷应被评为合格试卷.(2)50人中成绩一般、良好及优秀的比例为,所以所抽出的10人中,成绩优秀的有3人,所以的取值可能为0,1,2,3;;;.所以随机变的分布列为0123故.【点睛】本小题主要考查正态分布的概念,考查频率的计算,考查超几何分布的分布列以及数学期望的计算,属于中档题.18、(1).(2)见详解.【解析】

(1)设公差为,由已知条件列出方程组,解得,解得数列的通项公式.(2)得出,可由裂项相消法求出其前项和,进而可证结论.【详解】(1)设等差数列的公差为().由题意得则化简得解得所以.(2)证明:,所以.【点睛】本题考查等差数列和等比数列的基本量运算、裂项相消法求和、不等式的证明.通项公式形如的数列,可由裂项相消法求和.19、(1);(2).【解析】

(1)将代入函数的解析式,并将函数表示为分段函数,分段解出不等式,可得出所求不等式的解集;(2)分和两种情况,将函数的解析式表示为分段函数,求出函数的最小值,然后解出不等式可得出实数的取值范围.【详解】(1)当时,,当时,由,得;当时,由,得;当时,不等式无解.所以原不等式的解集为;(2)当时,;当时,.所以,由,得或,所以实数的取值范围是.【点睛】本题考查绝对值不等式的解法以及绝不等式不等式恒成立问题,一般采用去绝对值的办法,利用分类讨论思想求解,考查分类讨论思想的应用,属于中等题.20、(Ⅰ),,,;(Ⅱ)见证明【解析】

(Ⅰ)分别取代入计算,,,的值.(Ⅱ)猜想,用数学归纳法证明.【详解】解:(Ⅰ)当时,∵,∴,又,∴,同理,;(Ⅱ)猜想下面用数学归纳法证明这个结论.①当时,结论成立.②假设时结论成立,即,当时,,∴,∴即当时结论成立.由①②知对任意的正整数n都成立.【点睛】本题考查了数列和前项和的关系,猜测,数学归纳法,意在考查学生归纳推理能力.21、(1)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)见解析.【解析】

(1)由题意知求出f(x)>40时x的取值范围即可;(2)分段求出g(x)的解析式,判断g(x)的单调性,再说明其实际意义.【详解】(1)由题意知,当时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论