版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四讲全控型器件及其他新型电力电子器件教师:孔祥新地点:JC202曲阜师范大学电气信息与自动化学院1第四讲全控型器件及其他新型教师:孔祥新曲阜师范大学电气信息回顾----整流器件的应用功率二极管的基本特性:PNAKAKVD具有单向导电性2回顾----整流器件的应用功率二极管的基本特性:PNAKAK功率二极管的类型整流二极管:通态正向压降很低,反向阻断电压和工作电流可以高达几千伏和几千安,但反向恢复时间较长。多用于开关频率不高的场合,一般在1KHz以下。快速恢复二极管:恢复时间短,尤其是反向恢复时间短,一般在5微秒以内,多用于与可控开关配合的高频电路中。肖特基二极管是以金属和半导体接触形成的势垒为基础的二极管,其反向恢复的时间更短。适用于较低输出电压和要求较低正向管压降的换流电路中。3功率二极管的类型整流二极管:3二极管的应用续流限幅钳位稳压整流倍压整流4二极管的应用续流44.1门极可关断晶闸管结构:与普通晶闸管的相同点:PNPN四层半导体结构,外部引出阳极、阴极和门极。和普通晶闸管的不同点:GTO是一种多元的功率集成器件。图1-13GTO的内部结构和电气图形符号a)各单元的阴极、门极间隔排列的图形b)并联单元结构断面示意图c)电气图形符号1)GTO的结构和工作原理54.1门极可关断晶闸管结构:图1-13GTO的内部结4.1门极可关断晶闸管工作原理:与普通晶闸管一样,可以用图1-7所示的双晶体管模型来分析。
图1-7晶闸管的双晶体管模型及其工作原理1+2=1是器件临界导通的条件。由P1N1P2和N1P2N2构成的两个晶体管V1、V2分别具有共基极电流增益1和2
。64.1门极可关断晶闸管工作原理:图1-7晶闸管的双晶4.1门极可关断晶闸管GTO能够通过门极关断的原因是其与普通晶闸管有如下区别:设计2较大,使晶体管V2控制灵敏,易于GTO。导通时1+2更接近1,导通时接近临界饱和,有利门极控制关断,但导通时管压降增大。
多元集成结构,使得P2基区横向电阻很小,能从门极抽出较大电流。
图1-7晶闸管的工作原理74.1门极可关断晶闸管GTO能够通过门极关断的原因是其与4.1门极可关断晶闸管GTO导通过程与普通晶闸管一样,只是导通时饱和程度较浅。GTO关断过程中有强烈正反馈使器件退出饱和而关断。多元集成结构还使GTO比普通晶闸管开通过程快,承受di/dt能力强。由上述分析我们可以得到以下结论:84.1门极可关断晶闸管由上述分析我们可以得到以下结论:4.1门极可关断晶闸管开通过程:与普通晶闸管相同关断过程:与普通晶闸管有所不同储存时间ts,使等效晶体管退出饱和。下降时间tf尾部时间tt
—残存载流子复合。通常tf比ts小得多,而tt比ts要长。门极负脉冲电流幅值越大,ts越短。Ot0tiGiAIA90%IA10%IAtttftstdtrt0t1t2t3t4t5t6图1-14
GTO的开通和关断过程电流波形GTO的动态特性94.1门极可关断晶闸管开通过程:与普通晶闸管相同Ot0t4.1门极可关断晶闸管GTO的主要参数——延迟时间与上升时间之和。延迟时间一般约1~2s,上升时间则随通态阳极电流的增大而增大。——一般指储存时间和下降时间之和,不包括尾部时间。下降时间一般小于2s。(2)关断时间toff(1)开通时间ton
不少GTO都制造成逆导型,类似于逆导晶闸管,需承受反压时,应和电力二极管串联
。许多参数和普通晶闸管相应的参数意义相同,以下只介绍意义不同的参数。104.1门极可关断晶闸管GTO的主要参数——延迟时间与4.1门极可关断晶闸管(3)最大可关断阳极电流IATO(4)
电流关断增益off
off一般很小,只有5左右,这是GTO的一个主要缺点。1000A的GTO关断时门极负脉冲电流峰值要200A。——GTO额定电流。——最大可关断阳极电流与门极负脉冲电流最大值IGM之比称为电流关断增益。(1-8)114.1门极可关断晶闸管(3)最大可关断阳极电流IATO(4.2电力晶体管电力晶体管(GiantTransistor——GTR,直译为巨型晶体管)。耐高电压、大电流的双极结型晶体管(BipolarJunctionTransistor——BJT),英文有时候也称为PowerBJT。DATASHEET1
2
应用20世纪80年代以来,在中、小功率范围内取代晶闸管,但目前又大多被IGBT和电力MOSFET取代。术语用法:124.2电力晶体管术语用法:12与普通的双极结型晶体管基本原理是一样的。主要特性是耐压高、电流大、开关特性好。通常采用至少由两个晶体管按达林顿接法组成的单元结构。采用集成电路工艺将许多这种单元并联而成。4.2
电力晶体管1)GTR的结构和工作原理图1-15GTR的结构、电气图形符号和内部载流子的流动
a)内部结构断面示意图b)电气图形符号c)内部载流子的流动13与普通的双极结型晶体管基本原理是一样的。4.2电力晶4.2电力晶体管在应用中,GTR一般采用共发射极接法。集电极电流ic与基极电流ib之比为(1-9)
——GTR的电流放大系数,反映了基极电流对集电极电流的控制能力。当考虑到集电极和发射极间的漏电流Iceo时,ic和ib的关系为ic=ib+Iceo(1-10)单管GTR的
值比小功率的晶体管小得多,通常为10左右,采用达林顿接法可有效增大电流增益。空穴流电子流c)EbEcibic=bibie=(1+b)ib1)GTR的结构和工作原理144.2电力晶体管在应用中,GTR一般采用共发射极接法4.2电力晶体管
(1)
静态特性共发射极接法时的典型输出特性:截止区、放大区和饱和区。在电力电子电路中GTR工作在开关状态。在开关过程中,即在截止区和饱和区之间过渡时,要经过放大区。截止区放大区饱和区OIcib3ib2ib1ib1<ib2<ib3Uce图1-16共发射极接法时GTR的输出特性2)GTR的基本特性154.2电力晶体管截止区放大区饱和区OIcib3ib24.2电力晶体管开通过程延迟时间td和上升时间tr,二者之和为开通时间ton。加快开通过程的办法。关断过程储存时间ts和下降时间tf,二者之和为关断时间toff
。加快关断速度的办法。GTR的开关时间在几微秒以内,比晶闸管和GTO都短很多。ibIb1Ib2Icsic0090%Ib110%Ib190%Ics10%Icst0t1t2t3t4t5tttofftstftontrtd图1-17GTR的开通和关断过程电流波形(2)
动态特性164.2电力晶体管开通过程ibIb1Ib2Icsic04.2电力晶体管前已述及:电流放大倍数、直流电流增益hFE、集射极间漏电流Iceo、集射极间饱和压降Uces、开通时间ton和关断时间toff
(此外还有):
1)
最高工作电压
GTR上电压超过规定值时会发生击穿。击穿电压不仅和晶体管本身特性有关,还与外电路接法有关。BUcbo>BUcex>BUces>BUcer>Buceo。实际使用时,最高工作电压要比BUceo低得多。3)GTR的主要参数174.2电力晶体管3)GTR的主要参数174.2电力晶体管通常规定为hFE下降到规定值的1/2~1/3时所对应的Ic。实际使用时要留有裕量,只能用到IcM的一半或稍多一点。
3)
集电极最大耗散功率PcM最高工作温度下允许的耗散功率。产品说明书中给PcM时同时给出壳温TC,间接表示了最高工作温度。
2)
集电极最大允许电流IcM184.2电力晶体管2)
集电极最大允许电流IcM184.2电力晶体管一次击穿:集电极电压升高至击穿电压时,Ic迅速增大。只要Ic不超过限度,GTR一般不会损坏,工作特性也不变。
二次击穿:一次击穿发生时,Ic突然急剧上升,电压陡然下降。常常立即导致器件的永久损坏,或者工作特性明显衰变。安全工作区(SafeOperatingArea——SOA)最高电压UceM、集电极最大电流IcM、最大耗散功率PcM、二次击穿临界线限定。SOAOIcIcMPSBPcMUceUceM图1-18GTR的安全工作区GTR的二次击穿现象与安全工作区194.2电力晶体管一次击穿:集电极电压升高至击穿电压时4.3电力场效应晶体管分为结型和绝缘栅型通常主要指绝缘栅型中的MOS型(MetalOxideSemiconductorFET)简称电力MOSFET(PowerMOSFET)结型电力场效应晶体管一般称作静电感应晶体管(StaticInductionTransistor——SIT)
特点——用栅极电压来控制漏极电流驱动电路简单,需要的驱动功率小。开关速度快,工作频率高。热稳定性优于GTR。电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。电力场效应晶体管204.3电力场效应晶体管分为结型和绝缘栅型
特点——用栅4.3电力场效应晶体管电力MOSFET的种类
按导电沟道可分为P沟道和N沟道。
耗尽型——当栅极电压为零时漏源极之间就存在导电沟道。
增强型——对于N(P)沟道器件,栅极电压大于(小于)零时才存在导电沟道。
电力MOSFET主要是N沟道增强型。DATASHEET1)电力MOSFET的结构和工作原理214.3电力场效应晶体管电力MOSFET的种类1)电力M4.3电力场效应晶体管电力MOSFET的结构是单极型晶体管。导电机理与小功率MOS管相同,但结构上有较大区别。采用多元集成结构,不同的生产厂家采用了不同设计。图1-19电力MOSFET的结构和电气图形符号224.3电力场效应晶体管电力MOSFET的结构是单极型晶4.3电力场效应晶体管小功率MOS管是横向导电器件。电力MOSFET大都采用垂直导电结构,又称为VMOSFET(VerticalMOSFET)。按垂直导电结构的差异,分为利用V型槽实现垂直导电的VVMOSFET和具有垂直导电双扩散MOS结构的VDMOSFET(VerticalDouble-diffusedMOSFET)。这里主要以VDMOS器件为例进行讨论。电力MOSFET的结构234.3电力场效应晶体管小功率MOS管是横向导电器件。电4.3电力场效应晶体管截止:漏源极间加正电源,栅源极间电压为零。P基区与N漂移区之间形成的PN结J1反偏,漏源极之间无电流流过。导电:在栅源极间加正电压UGS当UGS大于UT时,P型半导体反型成N型而成为反型层,该反型层形成N沟道而使PN结J1消失,漏极和源极导电。图1-19电力MOSFET的结构和电气图形符号电力MOSFET的工作原理244.3电力场效应晶体管图1-19电力MOSFET的4.3电力场效应晶体管
(1)静态特性漏极电流ID和栅源间电压UGS的关系称为MOSFET的转移特性。ID较大时,ID与UGS的关系近似线性,曲线的斜率定义为跨导Gfs。010203050402468a)10203050400b)1020305040饱和区非饱和区截止区ID/AUTUGS/VUDS/VUGS=UT=3VUGS=4VUGS=5VUGS=6VUGS=7VUGS=8VID/A图1-20电力MOSFET的转移特性和输出特性
a)转移特性b)输出特性2)电力MOSFET的基本特性254.3电力场效应晶体管
(1)静态特性0102034.3电力场效应晶体管截止区(对应于GTR的截止区)饱和区(对应于GTR的放大区)非饱和区(对应GTR的饱和区)工作在开关状态,即在截止区和非饱和区之间来回转换。漏源极之间有寄生二极管,漏源极间加反向电压时器件导通。通态电阻具有正温度系数,对器件并联时的均流有利。图1-20电力MOSFET的转移特性和输出特性
a)转移特性b)输出特性MOSFET的漏极伏安特性:010203050402468a)10203050400b)1020305040饱和区非饱和区截止区ID/AUTUGS/VUDS/VUGS=UT=3VUGS=4VUGS=5VUGS=6VUGS=7VUGS=8VID/A264.3电力场效应晶体管图1-20电力MOSFET的转移4.3电力场效应晶体管开通过程开通延迟时间td(on)
上升时间tr开通时间ton——开通延迟时间与上升时间之和关断过程关断延迟时间td(off)下降时间tf关断时间toff——关断延迟时间和下降时间之和a)b)RsRGRFRLiDuGSupiD信号+UEiDOOOuptttuGSuGSPuTtd(on)trtd(off)tf图1-21电力MOSFET的开关过程a)测试电路b)开关过程波形up—脉冲信号源,Rs—信号源内阻,RG—栅极电阻,RL—负载电阻,RF—检测漏极电流(2)
动态特性274.3电力场效应晶体管a)b)RsRGRFRLiDuG4.3电力场效应晶体管
MOSFET的开关速度和Cin充放电有很大关系。可降低驱动电路内阻Rs减小时间常数,加快开关速度。不存在少子储存效应,关断过程非常迅速。开关时间在10~100ns之间,工作频率可达100kHz以上,是主要电力电子器件中最高的。场控器件,静态时几乎不需输入电流。但在开关过程中需对输入电容充放电,仍需一定的驱动功率。开关频率越高,所需要的驱动功率越大。MOSFET的开关速度284.3电力场效应晶体管MOSFET的开关速度284.3电力场效应晶体管3)电力MOSFET的主要参数
——电力MOSFET电压定额(1)
漏极电压UDS
(2)
漏极直流电流ID和漏极脉冲电流幅值IDM——电力MOSFET电流定额(3)栅源电压UGS——UGS>20V将导致绝缘层击穿。
除跨导Gfs、开启电压UT以及td(on)、tr、td(off)和tf之外还有:
(4)
极间电容——极间电容CGS、CGD和CDS294.3电力场效应晶体管3)电力MOSFET的主要参数4.4绝缘栅双极晶体管两类器件取长补短结合而成的复合器件—Bi-MOS器件绝缘栅双极晶体管(Insulated-gateBipolarTransistor——IGBT或IGT)(DATASHEET1
2)GTR和MOSFET复合,结合二者的优点。1986年投入市场,是中小功率电力电子设备的主导器件。继续提高电压和电流容量,以期再取代GTO的地位。GTR和GTO的特点——双极型,电流驱动,有电导调制效应,通流能力很强,开关速度较低,所需驱动功率大,驱动电路复杂。MOSFET的优点——单极型,电压驱动,开关速度快,输入阻抗高,热稳定性好,所需驱动功率小而且驱动电路简单。304.4绝缘栅双极晶体管GTR和G4.4绝缘栅双极晶体管1)IGBT的结构和工作原理三端器件:栅极G、集电极C和发射极E图1-22IGBT的结构、简化等效电路和电气图形符号a)内部结构断面示意图b)简化等效电路c)电气图形符号314.4绝缘栅双极晶体管1)IGBT的结构和工作原4.4绝缘栅双极晶体管图1-22a—N沟道VDMOSFET与GTR组合——N沟道IGBT。IGBT比VDMOSFET多一层P+注入区,具有很强的通流能力。简化等效电路表明,IGBT是GTR与MOSFET组成的达林顿结构,一个由MOSFET驱动的厚基区PNP晶体管。RN为晶体管基区内的调制电阻。图1-22IGBT的结构、简化等效电路和电气图形符号a)内部结构断面示意图b)简化等效电路c)电气图形符号IGBT的结构324.4绝缘栅双极晶体管图1-22a—N沟道VDMOS4.4绝缘栅双极晶体管
驱动原理与电力MOSFET基本相同,场控器件,通断由栅射极电压uGE决定。导通:uGE大于开启电压UGE(th)时,MOSFET内形成沟道,为晶体管提供基极电流,IGBT导通。通态压降:电导调制效应使电阻RN减小,使通态压降减小。关断:栅射极间施加反压或不加信号时,MOSFET内的沟道消失,晶体管的基极电流被切断,IGBT关断。IGBT的原理334.4绝缘栅双极晶体管
驱动原理与电力MOSFETa)b)O有源区正向阻断区饱和区反向阻断区ICUGE(th)UGEOICURMUFMUCEUGE(th)UGE增加4.4绝缘栅双极晶体管2)IGBT的基本特性(1)
IGBT的静态特性图1-23IGBT的转移特性和输出特性a)转移特性b)输出特性转移特性——IC与UGE间的关系(开启电压UGE(th))输出特性分为三个区域:正向阻断区、有源区和饱和区。34a)b)O有源区正向阻断区饱和区反向阻断区ICUGE(th)4.4绝缘栅双极晶体管ttt10%90%10%90%UCEIC0O0UGEUGEMICMUCEMtfv1tfv2tofftontfi1tfi2td(off)tftd(on)trUCE(on)UGEMUGEMICMICM图1-24IGBT的开关过程IGBT的开通过程
与MOSFET的相似开通延迟时间td(on)
电流上升时间tr
开通时间tonuCE的下降过程分为tfv1和tfv2两段。tfv1——IGBT中MOSFET单独工作的电压下降过程;tfv2——MOSFET和PNP晶体管同时工作的电压下降过程。(2)
IGBT的动态特性354.4绝缘栅双极晶体管ttt10%90%10%90%4.4绝缘栅双极晶体管图1-24IGBT的开关过程关断延迟时间td(off)电流下降时间
关断时间toff电流下降时间又可分为tfi1和tfi2两段。tfi1——IGBT器件内部的MOSFET的关断过程,iC下降较快。tfi2——IGBT内部的PNP晶体管的关断过程,iC下降较慢。IGBT的关断过程ttt10%90%10%90%UCEIC0O0UGEUGEMICMUCEMtfv1tfv2tofftontfi1tfi2td(off)tftd(on)trUCE(on)UGEMUGEMICMICM364.4绝缘栅双极晶体管图1-24IGBT的开关过4.4绝缘栅双极晶体管3)IGBT的主要参数——正常工作温度下允许的最大功耗。(3)
最大集电极功耗PCM——包括额定直流电流IC和1ms脉宽最大电流ICP。
(2)
最大集电极电流——由内部PNP晶体管的击穿电压确定。(1)
最大集射极间电压UCES374.4绝缘栅双极晶体管3)IGBT的主要参数——4.4绝缘栅双极晶体管IGBT的特性和参数特点可以总结如下:开关速度高,开关损耗小。相同电压和电流定额时,安全工作区比GTR大,且具有耐脉冲电流冲击能力。通态压降比VDMOSFET低。输入阻抗高,输入特性与MOSFET类似。与MOSFET和GTR相比,耐压和通流能力还可以进一步提高,同时保持开关频率高的特点。384.4绝缘栅双极晶体管IGBT的特性和参数特点可以总4.4绝缘栅双极晶体管擎住效应或自锁效应:IGBT往往与反并联的快速二极管封装在一起,制成模块,成为逆导器件。——最大集电极电流、最大集射极间电压和最大允许电压上升率duCE/dt确定。反向偏置安全工作区(RBSOA)——最大集电极电流、最大集射极间电压和最大集电极功耗确定。正偏安全工作区(FBSOA)动态擎住效应比静态擎住效应所允许的集电极电流小。擎住效应曾限制IGBT电流容量提高,20世纪90年代中后期开始逐渐解决。——NPN晶体管基极与发射极之间存在体区短路电阻,P形体区的横向空穴电流会在该电阻上产生压降,相当于对J3结施加正偏压,一旦J3开通,栅极就会失去对集电极电流的控制作用,电流失控。394.4绝缘栅双极晶体管擎住效应或自锁效应:IGBT1.5其他新型电力电子器件1.5.1MOS控制晶闸管MCT1.5.2静电感应晶体管SIT1.5.3静电感应晶闸管SITH1.5.4集成门极换流晶闸管IGCT1.5.5功率模块与功率集成电路401.5其他新型电力电子器件1.5.1MOS控制晶闸1.5.1MOS控制晶闸管MCTMCT结合了二者的优点:承受极高di/dt和du/dt,快速的开关过程,开关损耗小。高电压,大电流、高载流密度,低导通压降。一个MCT器件由数以万计的MCT元组成。每个元的组成为:一个PNPN晶闸管,一个控制该晶闸管开通的MOSFET,和一个控制该晶闸管关断的MOSFET。其关键技术问题没有大的突破,电压和电流容量都远未达到预期的数值,未能投入实际应用。MCT(MOSControlledThyristor)——MOSFET与晶闸管的复合(DATASHEET)411.5.1MOS控制晶闸管MCTMCT结合了二者的优点1.5.2静电感应晶体管SIT多子导电的器件,工作频率与电力MOSFET相当,甚至更高,功率容量更大,因而适用于高频大功率场合。在雷达通信设备、超声波功率放大、脉冲功率放大和高频感应加热等领域获得应用。缺点:栅极不加信号时导通,加负偏压时关断,称为正常导通型器件,使用不太方便。通态电阻较大,通态损耗也大,因而还未在大多数电力电子设备中得到广泛应用。SIT(StaticInductionTransistor)——结型场效应晶体管421.5.2静电感应晶体管SITSIT(StaticI1.5.3静电感应晶闸管SITHSITH是两种载流子导电的双
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年沪科新版九年级历史上册阶段测试试卷含答案
- 2025年新世纪版必修二历史上册月考试卷
- 2025年青岛版六三制新必修2地理下册月考试卷含答案
- 2025年外研版2024高三生物上册阶段测试试卷
- 2025年浙教版选择性必修3生物上册月考试卷含答案
- 2025年度木材贸易代理服务合同范本2篇
- 2025宾馆洗浴中心客户满意度提升与忠诚度维护合同3篇
- 2025版农业科技园区基础设施建设合同7篇
- 2025年度店面多媒体展示系统设计与安装承包合同4篇
- 2025年度拟上公司与会计事务所财务数据共享保密合同4篇
- 2025-2030年中国草莓市场竞争格局及发展趋势分析报告
- 第二章《有理数的运算》单元备课教学实录2024-2025学年人教版数学七年级上册
- 华为智慧园区解决方案介绍
- 奕成玻璃基板先进封装中试线项目环评报告表
- 广西壮族自治区房屋建筑和市政基础设施全过程工程咨询服务招标文件范本(2020年版)修订版
- 人教版八年级英语上册期末专项复习-完形填空和阅读理解(含答案)
- 2024新版有限空间作业安全大培训
- GB/T 44304-2024精细陶瓷室温断裂阻力试验方法压痕(IF)法
- 年度董事会工作计划
- 《退休不褪色余热亦生辉》学校退休教师欢送会
- 02R112拱顶油罐图集
评论
0/150
提交评论