版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一节等式性质与不等式性质第二章内容索引0102强基础固本增分研考点精准突破课标解读1.梳理等式的性质,理解不等式的概念.2.掌握不等式的性质.3.能够利用不等式的性质解决有关问题.强基础固本增分1.等式的性质(1)如果a=b,则对任意c,都有a+c=b+c;(2)如果a=b,则对任意
不为零
的c,都有ac=bc.
2.比较两个实数大小的方法
3.不等式的性质与推论
微思考
常用结论
自主诊断题组一
思考辨析(判断下列结论是否正确,正确的画“√”,错误的画“×”)1.两个实数a,b之间,有且只有a>b,a=b,a<b三种关系中的一种.(
)2.一个不等式的两边同时加上或乘同一个数,不等号方向不变.(
)3.一个非零实数越大,则其倒数就越小.(
)4.若
>1,则a>b.(
)√×××题组二
双基自测5.
比较两个式子的大小:x2-x
x-2.
答案
>解析
因为(x2-x)-(x-2)=x2-2x+2=(x-1)2+1,又因为(x-1)2≥0,所以(x-1)2+1≥1>0,从而(x2-x)-(x-2)>0,因此x2-x>x-2.6.
已知b克糖水中含有a克糖(b>a>0),再添加m克糖(m>0)(假设全部溶解),糖水变甜了.请将这一事实表示为一个不等式,并证明这个不等式成立.研考点精准突破考点一比较数(式)的大小A.x>y B.x=yC.x<y D.x,y的关系随c而定答案
C规律方法
A.a>b>c
B.a>c>bC.c>a>b
D.c>b>a答案
B考点二不等式的性质及其应用(多考向探究预测)考向1利用不等式的性质判断命题真假例题(多选)(2023·福建三明模拟)已知a,b,c,d均为实数,则下列命题正确的是(
)A.若a>b,c>d,则a-d>b-cB.若a>b,c>d,则ac>bd答案
AC解析
由不等式性质逐项分析.A选项:由c>d,故-d>-c,根据同向不等式的可加性,得a-d>b-c,故A正确;B选项:若a>0>b,0>c>d,则ac<bd,故B错误;规律方法
利用不等式的性质判断命题真假的两种方法(1)直接法:对于说法正确的,要利用不等式的相关性质证明;对于说法错误的,只需举出一个反例即可.(2)特殊值法:注意取值一定要遵循三个原则:一是满足题设条件;二是取值要简单,便于验证计算;三是所取的值要有代表性.对点训练若a<b<0,则下列不等式中不成立的是(
)答案
B考向2求代数式的取值范围例题设2<a<7,1<b<2,则a+3b的取值范围是
,ab的取值范围是
.
答案
(5,13)
(2,14)解析
∵2<a<7,1<b<2,由同向同正不等式的可乘性,得2<ab<14;∵3<3b<6,2<a<7,由同向不等式的可加性,得5<a+3b<13.引申探究1(变结论)本例条件不变,则2a-b的取值范围是
;的取值范围是
.
答案
(2,13)
(1,7)引申探究2(变条件,变结论)已知-1≤x+y≤1,1≤x-y≤5,则3x-2y的取值范围是(
)A.[2,13] B.[3,13] C.[2,10] D.[5,10]答案
A规律方法
根据不等式的性质求取值范围的策略(1)严格运用不等式的性质,注意其成立的条件.(2)同向不等式的两边可以相加,如果在解题过程中多次使用这种转化,就会扩大其取值范围.(3)建立待求范围式子的整体与已知范围式子的整体的关系,最后一次性运用不等式的性质求得取值范围.对点训练设f(x)=ax2+bx,若1≤f(-1)≤2,2≤f(1)≤4,则f(-2)的取值范围是
.
答案
[5,10]∴f(-2)=3f(-1)+f(1).∵1≤f(-1)≤2,2≤f(1)≤4,∴5≤3f(-1)+f(1)≤10,即5≤f(-2)≤10.∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 计算机软硬件购销合同
- 详解投标人须知的招标文件核心内容
- 语文大专阅读理解卷
- 财务顾问合同服务亮点
- 货物采购招标文件模板要点
- 质量技能担保
- 购物卡采购合同版
- 购销合同延期的影响
- 购销合同门禁系统的技术实践经验
- 走读生自觉培养自我保护能力保证书
- 肠道健康与全身健康的关系
- 招聘助理招聘面试题及回答建议(某大型国企)
- 大河的馈赠 课件 2024-2025学年鲁教版(五四制)初中美术六年级上册
- 江苏省南通市如皋市十四校联考2024-2025学年高三上学期教学质量调研(二)数学试题(含解析)
- 2024年初中七年级英语上册单元写作范文(新人教版)
- 2025年蛇年年会汇报年终总结大会模板
- 新编苏教版一年级科学上册实验报告册(典藏版)
- 广东省广州市2024年中考数学真题试卷(含答案)
- 九年级化学上册第四章《认识化学变化》测试卷-沪教版(含答案)
- 2023年甘肃白银有色集团股份有限公司招聘考试真题
- 人教部编版七年级语文上册《阅读综合实践》示范课教学设计
评论
0/150
提交评论