上海市实验学校2022-2023学年高二数学第二学期期末联考试题含解析_第1页
上海市实验学校2022-2023学年高二数学第二学期期末联考试题含解析_第2页
上海市实验学校2022-2023学年高二数学第二学期期末联考试题含解析_第3页
上海市实验学校2022-2023学年高二数学第二学期期末联考试题含解析_第4页
上海市实验学校2022-2023学年高二数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数在区间上为减函数,则的取值范围为()A. B. C. D.2.从标有1、2、3、4、5的五张卡片中,依次不放回地抽出2张,则在第一次抽到奇数的情况下,第二次抽到偶数的概率为()A. B. C. D.3.若曲线:与曲线:(其中无理数…)存在公切线,则整数的最值情况为()A.最大值为2,没有最小值 B.最小值为2,没有最大值C.既没有最大值也没有最小值 D.最小值为1,最大值为24.甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询、交通宣传等四个项目,每人限报其中一项,记事件A为4名同学所报项目各不相同”,事件B为“只有甲同学一人报关怀老人项目”,则P(B|A)=()A.14 B.34 C.25.某图书出版公司到某中学开展奉献爱心图书捐赠活动,某班级获得了某品牌的图书共4本,其中数学、英语、物理、化学各一本,现将这4本书随机发给该班的甲、乙、丙、丁4个人,每人一本,并请这4个人在得到的赠书之前进行预测,结果如下:甲说:乙或丙得到物理书;乙说:甲或丙得到英语书;丙说:数学书被甲得到;丁说:甲得到物理书.最终结果显示甲、乙、丙、丁4个人的预测均不正确,那么甲、乙、丙、丁4个人得到的书分别是()A.数学、物理、化学、英语 B.物理、英语、数学、化学C.数学、英语、化学、物理 D.化学、英语、数学、物理6.为了了解我校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,第2小组的频数为12,则抽取的学生总人数是()A.12 B.24 C.48 D.567.某市通过随机询问100名不同年级的学生是否能做到“扶跌倒老人”,得到如下列联表:做不到能做到高年级4510低年级3015则下列结论正确的是()附参照表:0.100.0250.012.7065.0246.635参考公式:,其中A.在犯错误的概率不超过的前提下,认为“学生能否做到‘扶跌倒老人’与年级高低有关”B.在犯错误的概率不超过的前提下,“学生能否做到‘扶跌倒老人’与年级高低无关”C.有以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低有关”D.有以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低无关”8.将名教师,名学生分成个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由名教师和名学生组成,不同的安排方案共有()A.种 B.种 C.种 D.种9.若关于的线性回归方程是由表中提供的数据求出,那么表中的值为()345634A. B. C. D.10.直线与曲线相切于点,则的值为()A.2 B.-1 C.1 D.-211.某批零件的尺寸X服从正态分布,且满足,零件的尺寸与10的误差不超过1即合格,从这批产品中抽取n件,若要保证抽取的合格零件不少于2件的概率不低于0.9,则n的最小值为()A.7 B.6 C.5 D.412.已知集合,,那么集合=A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数在和时取极小值,则实数a的取值范围是________.14.命题“,”的否定为______.15.如图是一个算法流程图,若输入的值为2,则输出的值为_______..16.已知圆:的面积为,类似的,椭圆:的面积为__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)三棱柱中,分别是、上的点,且,.设,,.(Ⅰ)试用表示向量;(Ⅱ)若,,,求MN的长..18.(12分)在中,角的对边分别是,已知,,.(1)求的值;(2)若角为锐角,求的值及的面积.19.(12分)已知函数.(1)求函数的极值;(2)若函数有两个零点,且,证明:.20.(12分)(1)设是两个正实数,且,求证:;(2)已知是互不相等的非零实数,求证:三个方程,,中至少有一个方程有两个相异实根.21.(12分)如图,四棱锥P﹣ABCD中,底面ABCD是一个菱形,三角形PAD是一个等腰三角形,∠BAD=∠PAD=,点E在线段PC上,且PE=3EC.(1)求证:AD⊥PB;(2)若平面PAD⊥平面ABCD,求二面角E﹣AB﹣P的余弦值.22.(10分)《西游记女儿国》是由星皓影业有限公司出品的喜剧魔幻片,由郑保瑞执导,郭富城、冯绍峰、赵丽颖、小沈阳、罗仲谦、林志玲、梁咏琪、刘涛等人领衔主演,该片于2017年电影之夜获得年度最受期待系列电影奖,于2018年2月16日(大年初一)在中国内地上映.某机构为了了解年后社区居民观看《西游记女儿国》的情况,随机调查了当地一个社区的60位居民,其中男性居民有25人,观看了此片的有10人,女性居民有35人,观看了此片的有25人.(1)完成下面列联表:性别观看此片未观看此片合计男女合计(2)根据以上列联表,能否在犯错误的概率不超过0.05的前提下,认为“该社区居民是否观看《西游记女儿国》与性别有关”?请说明理由.参考公式:.附表:0.500.400.250.150.100.050.0250.0100.0050.0010.4550.7081.3232.0722.7063.8415.0246.6357.87910.828|

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

对参数进行分类讨论,当为二次函数时,只需考虑对称轴和区间的位置关系即可.【详解】当时,,满足题意;当时,要满足题意,只需,且,解得.综上所述:.故选:B.【点睛】本题考查由函数的单调区间,求参数范围的问题,属基础题.2、B【解析】由题意,记“第一次抽到奇数”为事件A,记“第二次抽到偶数”为事件B,则,,所以.故选B.3、C【解析】分析:先根据公切线求出,再研究函数的最值得解.详解:当a≠0时,显然不满足题意.由得,由得.因为曲线:与曲线:(其中无理数…)存在公切线,设公切线与曲线切于点,与曲线切于点,则将代入得,由得,设当x<2时,,f(x)单调递减,当x>2时,,f(x)单调递增.或a<0.故答案为:C点睛:(1)本题主要考查导数的几何意义,考查利用导数求函数的最值,意在考查学生对这些基础知识的掌握能力和分析推理能力.(2)解答本题的关键是求出,再研究函数的最值得解.4、A【解析】

确定事件AB,利用古典概型的概率公式计算出PAB和PA,再利用条件概型的概率公式可计算出P【详解】事件AB为“4名同学所报项目各不相同且只有甲同学一人报关怀老人项目”,则PAB=A3344【点睛】本题考查条件概型概率的计算,考查条件概率公式的理解和应用,考查运算能力,属于中等题。5、D【解析】

根据甲说的和丁说的都错误,得到物理书在丁处,然后根据丙说的错误,判断出数学书不在甲处,从而得到答案.【详解】甲说:乙或丙得到物理书;丁说:甲得到物理书.因为甲和丁说的都是错误的,所以物理书不在甲、乙、丙处,故物理书在丁处,排除A、B选项;因为丙说:数学书被甲得到,且丙说的是错误的,所以数学书不在甲处,故排除C项;所以答案选D项.【点睛】本题考查根据命题的否定的实际应用,属于简单题.6、C【解析】试题分析:根据题意可知,第组的频数为,前组的频率和为,所以抽取的学生总人数为,故选C.考点:频率分布直方图与频数.7、C【解析】分析:根据列联表中数据,利用公式求得,参照临界值表即可得到正确结论.详解:由公式可得,参照临界值表,,以上的把握认为,“学生能否做到‘扶跌倒老人’与年级高低有关”,故选C.点睛:本题考查了独立性检验的应用,属于基础题.独立性检验的一般步骤:(1)根据样本数据制成列联表;(2)根据公式计算的值;(3)查表比较与临界值的大小关系,作统计判断.8、A【解析】试题分析:第一步,为甲地选一名老师,有种选法;第二步,为甲地选两个学生,有种选法;第三步,为乙地选名教师和名学生,有种选法,故不同的安排方案共有种,故选A.考点:排列组合的应用.9、C【解析】由表可得样本中心点的坐标为,根据线性回归方程的性质可得,解出,故选C.10、A【解析】

求得函数的导数,可得切线的斜率,由切点满足切线的方程和曲线的方程,解方程即可求解,得到答案.【详解】由题意,直线与曲线相切于点,则点满足直线,代入可得,解得,又由曲线,则,所以,解得,即,把点代入,可得,解答,所以,故选A.【点睛】本题主要考查了利用导数的几何意义求解参数问题,其中解答中熟记导数的几何意义,合理准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.11、D【解析】

计算,根据题意得到,设,判断数列单调递减,又,,得到答案.【详解】因为,且,所以,即每个零件合格的概率为.合格零件不少于2件的对立事件是合格零件个数为零个或一个.合格零件个数为零个或一个的概率为,由,得①,令.因为,所以单调递减,又因为,,所以不等式①的解集为.【点睛】本题考查了正态分布,概率的计算,数列的单调性,意在考查学生的计算能力和综合应用能力.12、B【解析】

直接进行交集的运算即可.【详解】∵M={0,1,2},N={x|0≤x<2};∴M∩N={0,1}.故选:B.【点睛】本题考查列举法、描述法的定义,以及交集的运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】分析:根据题意在和时取极小值即0,1为导函数等于零的根,故可分解因式导函数,然后根据在0,1处要取得极小值从而确定a的取值范围.详解:由题可得:,令故原函数有三个极值点为0,1,a,即导函数有三个解,由在0,1处要取得极小值所以0和1的左边导函数的值要为负值,右边要为正值,故a值只能放在0和1的中间,所以a的取值范围是.点睛:考查函数的极值点的定义和判断,对定义的理解是解题关键,属于中档题.14、,【解析】

直接利用全称命题的否定是特称命题写出结果即可.【详解】解:因为全称命题的否定为特称命题,故命题“,”的否定为:“,”故答案为:,【点睛】本题考查命题的否定,特称命题与全称命题的关系,属于基础题.15、5【解析】

直接模拟程序即可得结论.【详解】输入的值为2,不满足,所以,故答案是:5.【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有程序框图的输出结果的求解,属于简单题目.16、【解析】

根据类比推理直接写的结论即可.【详解】圆中存在互相垂直的半径,圆的面积为:椭圆中存在互相垂直的长半轴和短半轴,则类比可得椭圆的面积为:本题正确结果:【点睛】本题考查类比推理的问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】分析:(1)直接利用三角形加法和减法法则得到.(2)先求,再求MN的长.详解:(Ⅰ)(Ⅱ),,.:本题主要考查向量的运算法则和基底法,考查向量的模,意在考查学生对这些知识的掌握水平和分析转化能力.18、(1);(2),.【解析】试题分析:(1)根据题意和正弦定理求出a的值;

(2)由二倍角的余弦公式变形求出,由的范围和平方关系求出,由余弦定理列出方程求出的值,代入三角形的面积公式求出的面积.试题解析:(1)因为,,由正弦定理,得.(2)因为,且,所以,.由余弦定理,得,解得或(舍),所以.19、(1)答案见解析;(2)证明见解析.【解析】分析:(1)求出,分两种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间,根据单调性可得函数的极值;(2),为函数零点,可得,要证,只需证,,令,在上是增函数,∴,∴,从而可得结论.详解:(1)函数的定义域为..当时,,在上是减函数,所以在上无极值;当时,若,,在上是减函数.当,,在上是增函数,故当时,在上的极小值为.(2)证明:当时,,可证明由(1)知,在上是减函数,在上是增函数,是极值点,又,为函数零点,所以,要证,只需证.∵,又∵,∴,令,则,∴在上是增函数,∴,∴,∴,即得证.点睛:本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.20、(1)见解析;(2)见解析【解析】

(1)先证明,再在两边同时乘以正数(a+b),不等式即得证;(2)利用反证法证明即可.【详解】(1)证明:∵,∴,∴,∴,而均为正数,∴,∴,∴成立.(2)证明:假设三个方程中都没有两个相异实根,则,,.相加有,.①则,与由题意、、互不相等矛盾.∴假设不成立,即三个方程中至少有一个方程有两个相异实根.【点睛】本题主要考查不等式的证明,考查反证法,意在考查学生对这些知识的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论