第四章-数字图像处理-彩色图像增强课件_第1页
第四章-数字图像处理-彩色图像增强课件_第2页
第四章-数字图像处理-彩色图像增强课件_第3页
第四章-数字图像处理-彩色图像增强课件_第4页
第四章-数字图像处理-彩色图像增强课件_第5页
已阅读5页,还剩52页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四章彩色图像增强第四章彩色图像增强1彩色图像:是一种矢量图像,比灰度图像包含更多的信息。彩色图像增强技术分为两类: 伪彩色增强技术:对不同的灰度或灰度范围赋予不同的颜色. 真彩色增强技术:对彩色的不同分量区别对待。人对彩色的分辨能力和敏感程度比灰度强彩色图像:是一种矢量图像,比灰度图像包含更多的信息。彩色图像2颜色模型可见光波长范围为:400nm~760nm,能使人产生视觉,感到明亮和颜色颜色模型可见光波长范围为:400nm~760nm,能使人产生3锥状细胞

每只眼睛中大约有600万到700万个锥状细胞,集中分布在视轴和视网膜相交点附近的黄斑区内。每个锥状细胞都连接一个神经末梢,因此,黄斑区对光有较高的分辨力,能充分识别图像的细节。锥状细胞既可以分辨光的强弱,也可以辨别色彩。白天视觉过程主要靠锥状细胞来完成,所以锥状机觉又称白昼视觉。按感光化学特性,锥状细胞有三种,它们分别对红、绿、蓝颜色敏感,因此红绿蓝称为人类视觉的三基色。三种锥状细胞的光谱敏感曲线如下:锥状细胞每只眼睛中大约有600万到700万4杆状细胞

每只眼睛大约有7600万个到15000万个杆状细胞。它广泛分布在整个视网膜表面上,并且有若干个杆状细胞同时连接在一根神经上,因此,这条神经只能感受多个杆状细胞的平均光刺激,使得在这些区域的视觉分辨力显著下降,无法辨别图像中的细微差别,而只能感知视野中景物的总的形象。杆状细胞不能感觉彩色,但对低照明度的景物柱往比较敏感,所以,夜晚所观察到的景物只有黑白、浓淡之分,而看不清它们的颜色差别。由于夜晚的视觉过程主要由杆状细胞完成,所以杆状视觉又称夜视觉。杆状细胞每只眼睛大约有7600万个到1505英国人Newton,三棱镜实验证明了白光是所有可见光的组合。颜色模型英国人Newton,三棱镜实验颜色模型61931年,国际照明委员会(CIE)规定用700nm、546.1nm、435.8nm的单色光作为红(R)、绿(G)、蓝(B)三原色R代表红光,为大红色相,红中具有黄味;G代表绿光,为比较香嫩的绿色色相B代表蓝紫光,色相为蓝中带有紫味根据三原色原理,任意彩色的颜色方程为:F=α(R)+β(G)+γ(B)其中αβγ是红绿蓝三色的混合比例,称为三色系数颜色模型指的是某个三维颜色空间中的一个可见光子集,它包含某个色彩域的所有色彩颜色模型1931年,国际照明委员会(CIE)规定用700nm、5467CIE(国际照明委员会)1931年,CIE规定了三种标准原色x,y,z,用于颜色匹配,三种对应的颜色匹配函数如下:CIE色度图CIE(国际照明委员会)CIE色度图8对于可见光谱中的任何主波长的光,都可以用这三个标准原色的叠加来匹配注意:没有一个输出设备能够精确输出CIE图像,因为输出设备均有固定的墨和颜色,固定的几种颜色不能够表达所有可以看见的颜色CIE色度图

对于可见光谱中的任何主波长的光,都可以用这三个标准原色的叠加9对于可见光谱中的任意一种颜色C,可以找到一组权(X,Y,Z),使得:C=xX+yY+zZ,即用CIE原色匹配C,下图为XYZ空间中包含所有可见光的锥体CIE色度图

整个锥体落在第一象限,从原点引一条任意射线穿过该锥体,则射线上任意两点代表的色光具有相同的主波长和纯度在每条射线上各取一点即可代表所有的可见光,习惯上,这一点取做射线与平面X+Y+Z=1的交点,其坐标称为色度值,规格化坐标表示为:对于可见光谱中的任意一种颜色C,可以找到一组权(X,Y,Z)10可以把与平面X+Y+Z=1相交的色度值(x,y,z)中的(x,y)绘制成CIE色度图,如图。CIE色度图

边界和内部代表了所有可见光的色度值,z=1-x-y边界弯曲部分上的每一点,对应光谱在某种纯度为百分之百的色光,线上标明的数字为对应的主波长中央一点C代表白光,C点接近于x=y=z=1/3可以把与平面X+Y+Z=1相交的色度值(x,y,z)中的(x11CIE色度图主要有两种用途:用色度图计算任何颜色的主波长和纯度CIE色度图

如果B在曲边上,则B的主波长就是A的主波长,否则,找不到该颜色对应的主波长,此时,主波长可以用其补色的主波长值之后加c表示一种颜色称为另一种颜色的补色,指二者混合之后产生白色,图中F的补色为A,所以F的主波长为555umcCIE色度图主要有两种用途:CIE色度图如果B在曲边上,则12CIE色度图主要有两种用途:定义颜色域(ColorRanges)以便显示叠加颜色的效果CIE色度图I和J按不同比例叠加,可产生其连线上的任意一种颜色I,J和K按不同比例叠加,可产生三角形内的任意一种颜色对于任意一个三角形,如果其三个顶点均落在可见光区域内,则其混合所产生的颜色不能覆盖整个可见光区域红绿蓝三原色不能叠加出所有可见光颜色CIE色度图主要有两种用途:CIE色度图I和J按不同比例叠130.800.20.8xy520nm700-770nm红蓝绿NTSCPAL紫色度图0.800.20.8xy520nm700-770nm红蓝绿N14常见的色彩模型有RGB模型、CMYK模型、HSV模型、YIQ模型等。每种模型都有它自己的特点和适用范围,它们可以根据需要相互转换。RGB模型

这是最常见的色彩模型,由R(红)、G(绿)、B(蓝)三个分量组成,三维空间中的三个轴分别与红、绿、蓝三基色相对应.原点对应于黑色,离原点最远的顶点对应于白色。从黑到白的灰度值分布在这两个点的连线上,该线称为灰色线。其他颜色则落在三维空间中由红、绿、蓝三基色组成的彩色立方体中。通常情况下以RGB色彩模型为基础描述其它色彩模型,将其它色彩模型描述为RGB三色的线性或者非线性函数。

RGB模型在视频和显示器中广泛使用。

常见的色彩模型有RGB模型、CMYK模型、HSV模型15RGB模型单位立方体

RGB颜色模型构成的颜色空间是CIE原色空间的一个真子集,通常用于CRT和光栅显示器RGB三原色是加性原色RGB模型单位立方体RGB颜色模型构成的颜色空间是CIE原16CMY(K)模型

RGB模式是显示器上的颜色模式,而在图像印刷中却是用CMYK4色印刷模式来确定颜色的。是指通过混合青(Cyan)、品红(Magenta)、黄(Yellow)与黑(Black)色来产生全彩色阶调的颜色,这就是CMYK模式。其中Black以“K”表示(为了避免与Blue混淆)。这就是平常所说的减色模式,因为青、品红、黄分别是光谱色中的红、绿、蓝的补色,从而模拟出白光被物体吸收了一部分色光后的反射光。

CMYK模式中的颜色种类远不及RGB模式,但它却是打印的标准模式,是印刷业所使用的颜色模式。CMY(K)模型RGB模式是显示器上的颜色模式,而在图17第四章-数字图像处理-彩色图像增强ppt课件18C=255-RM=255-GY=255-BRGB与CMY之间的转换C=255-RRGB与CMY之间的转换19YIQ模型YIQ模型是美国国家电视系统委员会(NTSC)定义的用于电视广播的颜色系统,Y代表亮度信息,I和Q表示色度,其中I表示橙~青色,Q表示其他部分颜色。从RGB到YIQ的变换关系如下:

YIQ模型YIQ模型是美国国家电视系统委员会(NTSC)定义20HSI模型是Munseu提出的,它反映了人的视觉系统观察彩色的方式,在艺术上经常使用HSI模型。HSI模型中,H表示色调(Hue),S表示饱和度(Saturation),I表示亮度(Intensity,对应成像亮度和图像灰度)。该模型的建立基于两个重要的事实:I分量与图像的彩色信息无关。H和S分量与人感受颜色的方式是紧密相联的。这些特点使得HSI模型非常适合借助人的视觉系统来感知彩色特性的图像处理算法HSI模型HSI模型是Munseu提出的,它反映了人的视觉系统观察彩21HSI模型HSI模型的三个属性定义了一个三维柱形空间。灰度阴影沿着轴线从底部的黑变到顶部的白,具有最高亮度。最大饱和度的颜色位于圆柱上顶面的圆周上。这种模型的优点在于它将亮度(I)与反映色彩本质特性的两个参数(色度(H)和饱和度(S))分开。H色度,取值范围0°-360°;S饱和度,取值范围0-1/100;I亮度,取值范围0-1/100;色相环,0°-红,120°-绿,240°-蓝HSI模型HSI模型的三个属性定义了一个三维柱形空间。灰度阴22

图中的色相环描述了色相和饱和度两个参数。色相由角度表示,它反映了该彩色最接近什么样的光谱波长。一般假定0°表示的颜色为红色,120°的为绿色,240°的为蓝色。0°到240°的色相覆盖了所有可见光谱的彩色,在240°到300°之间为人眼可见的非光谱色(紫色)。饱和度是指一个颜色的鲜明程度,饱和度越高,颜色越深,如深红,深绿。饱和度参数是色环的原点(圆心)到彩色点的半径的长度。由色相环可以看出,环的边界上纯的或饱和的颜色,其饱和度值为1。在中心是中性(灰色)阴影,饱和度为0。图中的色相环描述了色相和饱和度两个参数。色相由角度表23

RGB转换到HSI

对任何3个[0,1]范围内的R、G、B值,其对应HSI模型中的I、S、H分量的计算公式为RGB转换到HSI24HSI到RGBHSI到RGB25HSV颜色模型HSV(HueSaturationValue)颜色模型是面向用户的,对应于圆柱坐标系中的一个圆锥形子集白色浓纯色色相色深黑灰HSV颜色模型示意图绿(120°)红(0°)青(180°)黄(60°)蓝(240°)品红(120°)HOS(1,0)V色相、色浓和色深之间的关系SHSV颜色模型HSV(HueSaturationVal26HSV颜色模型HSV模型中,每一种颜色和它的补色相差180度,饱和度(色深)取值从0到1HSV模型所代表的颜色域也是CIE原色空间的一个子集圆锥的顶点处V=0,H和S无定义,代表黑色,圆锥的顶面中心处S=0,V=1,H无定义,代表白色,从该点到原点代表亮度渐暗的白色,即具有不同灰度的白色任何V=1,S=1的颜色是纯色HSV颜色模型的优点:符合人眼对颜色的习惯三个坐标是独立的采用线性标尺HSV颜色模型HSV模型中,每一种颜色和它的补色相差18027从RGB立方体的白色顶点,顺主对角线向原点方向投影,可得到一个正六角形,此正六角形是HSV圆锥顶面的一个真子集RGB空间的主对角线对应于HSV空间的V轴HSV颜色模型从RGB立方体的白色顶点,顺主对角线向原点方向投影,可得到一28第四章-数字图像处理-彩色图像增强ppt课件29

真彩色增强

假彩色增强:把真实的自然彩色图像或遥感多光谱图像处理成假彩色图像。

伪彩色增强:把黑白图象处理成伪彩色图象。彩色增强技术真彩色增强彩色增强技术30伪彩色增强伪彩色(Pseudocoloring)增强是把一幅灰度图像的每个不同灰度级按照线性或非线性的映射函数变换成不同的彩色,得到一幅彩色图像。伪彩色增强伪彩色(Pseudocoloring)增强是把一31伪彩色增强基本目的由于人眼分辨不同彩色的能力比分别不同的灰度级的能力强,因此,把人眼无法区别的灰度变化,施以不同的彩色来提高识别率,这便是伪彩色增强的基本目的。伪彩色增强基本目的由于人眼分辨不同彩色的能力比分别不同的灰度32第四章-数字图像处理-彩色图像增强ppt课件333.

频域滤波3.频域滤波34第四章-数字图像处理-彩色图像增强ppt课件35c2c3c1c4对图像的灰度值动态范围进行分割,使分割后的每一灰度值区间甚至每一灰度值本身对应某一种颜色。如下图:c2c3c1c4对图像的灰度值动态范围进行分割,使分割后的每36第四章-数字图像处理-彩色图像增强ppt课件37第四章-数字图像处理-彩色图像增强ppt课件38m=8m=16m=64m=8m=16m=6439将黑白图像或者单色图像的各个灰度级匹配到彩色空间中的一点,从而使单色图像映射成彩色图像。黑白图像中不同的灰度级赋予不同的彩色。

基本原理不同的映射函数就能将灰度图像转化为不同的伪彩色图像。黑白图像

2、灰度到彩色的变换将黑白图像或者单色图像的各个灰度级匹配到彩色空间中的40灰度级-彩色变换法灰度级-彩色变换法41将每一个像元的灰度值通过三个独立变换分别产生红、绿、蓝三个分量图像,然后将其合成为一幅彩色图像。将每一个像元的灰度值通过三个独立变换分别产生红、绿、蓝三个分42频域滤波法在不同的频率分量与颜色之间经过一定的变换建立一种对应关系。频域滤波法在不同的频率分量与颜色之间经过一定的变换建43频域滤波法输出图像的伪彩色与原图像的灰度级无关,而是取决于灰度图像中不同的频率成分。

如果为了突出图像中高频成分(即图像的细节)而将其变为蓝色,则只需要将蓝通道滤波器设计成高通滤波器。如果要抑制图像中某种频率成分,那么可以设计一个带阻滤波器来达到目的。频域滤波法输出图像的伪彩色与原图像的灰度级无关,而是44

处理方法RGB真彩色增强处理方法RGB真彩色增强45有M×N个向量c(x,y)。有M×N个向量c(x,y)。46然而,单独的彩色分量的处理结果并不总等同于在彩色向量空间的直接处理。为了使每一彩色分量处理和基于向量的处理等同,必须满足两个条件:

第一,处理必须对向量和标量都可用。 第二,对向量每一分量的操作对于其他分量必须是独立的。然而,单独的彩色分量的处理结果并不总等同于在彩色向量空间的直47单分量变换增强单分量变换增强48第四章-数字图像处理-彩色图像增强ppt课件49一幅图像可以分解为RGB三个分量,也可以分解为H,S,I三个分量。由于人眼对H,S,I三个分量的感受是比较独立的,所以在HSI空间有可能只使用三个变换之一就可以了。一种简便常用的真彩色增强方法的基本步骤为:1)将R,G,B分量图转化为H,S,I分量图2)利用对灰度图增强的方法增强其中的一个分量图

3)再将结果转换为用R,G,B分量图来显示一幅图像可以分解为RGB三个分量,也可以分解为H,S,I三个50第四章-数字图像处理-彩色图像增强ppt课件51对亮度增强的方法并不改变原图的彩色内容,但增强后的图看起来还可能会有些感觉不同。这是因为尽管色调和饱和度没有变化,但亮度分量得到了增强,会使得人对色调或饱和度的感受有所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论