版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将A,B,C,D,E,F这6个字母随机排成一排组成一个信息码,则所得信息码恰好满足A,B,C三个字母连在一起,且B在A与C之间的概率为()A. B. C. D.2.已知则复数A. B. C. D.3.等差数列的前项和是,且,,则()A.39 B.91 C.48 D.514.已知函数,则此函数的导函数A. B.C. D.5.用反证法证明命题“已知函数在上单调,则在上至多有一个零点”时,要做的假设是()A.在上没有零点 B.在上至少有一个零点C.在上恰好有两个零点 D.在上至少有两个零点6.已知某几何体的三视图如图所示,则该几何体的外接球的表面积为()A. B. C. D.7.“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”。“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸未,甲申、乙酉、丙戌…癸巳,…,共得到60个组合,称六十甲子,周而复始,无穷无尽。2019年是“干支纪年法”中的己亥年,那么2026年是“干支纪年法”中的A.甲辰年 B.乙巳年 C.丙午年 D.丁未年8.已知,则中()A.至少有一个不小于1 B.至少有一个不大于1C.都不大于1 D.都不小于19.将6位女生和2位男生平分为两组,参加不同的两个兴趣小组,则2位男生在同一组的不同的选法数为()A.70 B.40 C.30 D.2010.复数(是虚数单位)的虚部是()A.B.C.-D.-11.椭圆的焦点坐标是()A. B. C. D.12.某军工企业为某种型号的新式步枪生产了一批枪管,其口径误差(单位:微米)服从正态分布,从已经生产出的枪管中随机取出一只,则其口径误差在区间内的概率为()(附:若随机变量服从正态分布,则,)A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知方程x2-2x+p=0的两个虚根为α、β,且α-β=4,则实数14.已知函数,则函数的最大值为__________.15.若函数与函数的图像有两个不同的交点,则实数b的取值范围是________;16.已知,,当取得最小值时,__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某校为“中学数学联赛”选拔人才,分初赛和复赛两个阶段进行,规定:分数不小于本次考试成绩中位数的具有复赛资格,某校有900名学生参加了初赛,所有学生的成绩均在区间内,其频率分布直方图如图.(1)求获得复赛资格应划定的最低分数线;(2)从初赛得分在区间的参赛者中,利用分层抽样的方法随机抽取7人参加学校座谈交流,那么从得分在区间与各抽取多少人?(3)从(2)抽取的7人中,选出4人参加全市座谈交流,设表示得分在中参加全市座谈交流的人数,学校打算给这4人一定的物质奖励,若该生分数在给予500元奖励,若该生分数在给予800元奖励,用Y表示学校发的奖金数额,求Y的分布列和数学期望。18.(12分)在平面直角坐标系xOy中,曲线C的参数方程为(a为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(1)求C的普通方程和l的倾斜角;(2)设点,l和C交于A,B两点,求.19.(12分)为了研究家用轿车在高速公路上的速情况,交通部门对名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在名男性驾驶员中,平均车速超过的有人,不超过的有人.在名女性驾驶员中,平均车速超过的有人,不超过的有人.(1)完成下面的列联表,并判断是否有的把握认为平均车速超过与性别有关,(结果保留小数点后三位)平均车速超过人数平均车速不超过人数合计男性驾驶员人数女性驾驶员人数合计(2)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取辆,若每次抽取的结果是相互独立的,问这辆车中平均有多少辆车中驾驶员为男性且车速超过?附:(其中为样本容量)20.(12分)设是等差数列,,且成等比数列.(1)求的通项公式;(2)记的前项和为,求的最小值.21.(12分)已知函数.(1)判断的图象是否是中心对称图形?若是,求出对称中心;若不是,请说明理由;(2)设,试讨论的零点个数情况.22.(10分)现从某医院中随机抽取了七位医护人员的关爱患者考核分数(患者考核:10分制),用相关的特征量表示;医护专业知识考核分数(试卷考试:100分制),用相关的特征量表示,数据如下表:(Ⅰ)求关于的线性回归方程(计算结果精确到0.01);(Ⅱ)利用(I)中的线性回归方程,分析医护专业考核分数的变化对关爱患者考核分数的影响,并估计某医护人员的医护专业知识考核分数为95分时,他的关爱患者考核分数(精确到0.1);(Ⅲ)现要从医护专业知识考核分数95分以下的医护人员中选派2人参加组建的“九寨沟灾后医护小分队”培训,求这两人中至少有一人考核分数在90分以下的概率.附:回归方程中斜率和截距的最小二乘法估计公式分别为
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
将A,B,C三个字捆在一起,利用捆绑法得到答案.【详解】由捆绑法可得所求概率为.故答案为C【点睛】本题考查了概率的计算,利用捆绑法可以简化运算.2、A【解析】分析:利用复数的乘法法则化简复数,再利用共轭复数的定义求解即.详解:因为,所以,,故选A.点睛:本题主要考查的是复数的乘法、共轭复数的定义,属于中档题.解答复数运算问题时一定要注意和以及运算的准确性,否则很容易出现错误.3、B【解析】解:由题意结合等差数列的通项公式有:,解得:,数列的前13项和:.本题选择B选项.4、D【解析】分析:根据对应函数的求导法则得到结果即可.详解:函数,故答案为:D.点睛:这个题目考查了具体函数的求导计算,注意计算的准确性,属于基础题目.5、D【解析】分析:利用反证法证明,假设一定是原命题的完全否定,从而可得结果.详解:因为“至多有一个”的否定是“至少有两个”,所以用反证法证明命题“已知函数在上单调,则在上至多有一个零点”时,要做的假设是在上至少有两个零点,故选D.点睛:反证法的适用范围是,(1)否定性命题;(2)结论涉及“至多”、“至少”、“无限”、“唯一”等词语的命题;(3)命题成立非常明显,直接证明所用的理论较少,且不容易证明,而其逆否命题非常容易证明;(4)要讨论的情况很复杂,而反面情况较少.6、D【解析】由题设中提供的三视图中的图形信息与数据信息可知该几何体是一个底面是边长分别为3,3,4的等腰三角形,高是4的三棱锥,如图,将其拓展成三棱柱,由于底面三角形是等腰三角形,所以顶角的余弦为,则,底面三角形的外接圆的半径,则三棱锥的外接球的半径,其表面积,应选答案D。7、C【解析】
按照题中规则依次从2019年列举到2026年,可得出答案。【详解】根据规则,2019年是己亥年,2020年是庚子年,2021年是辛丑年,2022年是壬寅年,2023年是癸卯年,2024年是甲辰年,2025年是乙巳年,2026年是丙午年,故选:C。【点睛】本题考查合情推理的应用,理解题中“干支纪年法”的定义,并找出相应的规律,是解本题的关键,考查逻辑推理能力,属于中等题。8、B【解析】
用反证法证明,假设同时大于,推出矛盾得出结果【详解】假设,,,三式相乘得,由,所以,同理,,则与矛盾,即假设不成立,所以不能同时大于,所以至少有一个不大于,故选【点睛】本题考查的是用反证法证明数学命题,把要证的结论进行否定,在此基础上推出矛盾,是解题的关键,同时还运用了基本不等式,本题较为综合9、C【解析】
先确定与2位男生同组的女生,再进行分组排列,即得结果【详解】2位男生在同一组的不同的选法数为,选C.【点睛】本题考查分组排列问题,考查基本分析求解能力,属基础题.10、C【解析】试题分析:,虚部为。考点:复数的运算。11、C【解析】
从椭圆方程确定焦点所在坐标轴,然后根据求的值.【详解】由椭圆方程得:,所以,又椭圆的焦点在上,所以焦点坐标是.【点睛】求椭圆的焦点坐标时,要先确定椭圆是轴型还是轴型,防止坐标写错.12、C【解析】
根据已知可得,结合正态分布的对称性,即可求解.【详解】.故选:C【点睛】本题考查正态分布中两个量和的应用,以及正态分布的对称性,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、5【解析】
根据题意得出Δ<0,然后求出方程x2-2x+p=0的两个虚根,再利用复数的求模公式结合等式α-β=4可求出实数【详解】由题意可知,Δ=4-4p<0,得p>1.解方程x2-2x+p=0,即x-12=1-p,解得所以,α-β=2p-1故答案为5.【点睛】本题考查实系数方程虚根的求解,同时也考查了复数模长公式的应用,考查运算求解能力,属于中等题.14、【解析】
对求导,然后令,判断的单调性,再根据的值确定函数的最大值.【详解】,,令,,,令,则,令,则,当时,,当时,,在上单调递减,在,上单调递增,函数在上单调递减,根据复合函数的单调性可知,当,即,时,,函数的最大值为.故答案为.【点睛】本题考查了利用导数研究函数的单调性和最值和三角函数求值,考查转化思想以及计算能力,属于中档题.15、【解析】
作出函数的图象和直线,由图形观察可知它们有两交点的情形。【详解】作出函数的图象和直线,如图,当直线过点时,,当直线与函数图象相切时,,,,(舍去),∴函数与函数的图像有两个不同的交点时。故答案为:【点睛】本题考查直线与函数图象交点个数问题,解题时用数形结合思想,即作出函数图象(半个椭圆)及直线当平移直线时观察它与函数图象的交点情况.本题解题时要特别注意函数图象只是椭圆的上半部分,不能误认为是整个椭圆,那就会得出错误结论.16、【解析】
根据均值不等式知,,即,再由即可求解,注意等号成立的条件.【详解】(当且仅当等号成立),(当且仅当等号成立),(当且仅当等号成立),.故答案为.【点睛】本题主要考查了均值不等式,不等式等号成立的条件,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)本次考试复赛资格最低分数线应划为100分;(2)5人,2人;(3)元.【解析】
(1)求获得复赛资格应划定的最低分数线,即是求考试成绩中位数,只需满足中位数两侧的频率之和均为0.5即可;(2)先确定得分在区间与的频率之比,即可求解;(3)先确定的可能取值,再求出其对应的概率,即可求出分布列和期望.【详解】(1)由题意知的频率为:,的频率为:所以分数在的频率为:,从而分数在的,假设该最低分数线为由题意得解得.故本次考试复赛资格最低分数线应划为100分。(2)在区间与,,在区间的参赛者中,利用分层抽样的方法随机抽取7人,分在区间与各抽取5人,2人,结果是5人,2人.(3)的可能取值为2,3,4,则:,从而Y的分布列为Y260023002000(元).【点睛】本题主要考查频率分布直方图求中位数,以及分层抽样和超几何分布等问题,熟记相关概念,即可求解,属于常考题型.18、(1)..(2).【解析】
(1)直接利用参数方程和极坐标方程公式得到普通方程,再计算倾斜角.(2)判断点在直线l上,建立直线参数方程,代入椭圆方程,利用韦达定理得到答案.【详解】(1)消去参数α得,即C的普通方程为.由,得,(*)将,代入(*),化简得,所以直线l的倾斜角为.(2)由(1),知点在直线l上,可设直线l的参数方程为(t为参数),即(t为参数),代入并化简,得,,设A,B两点对应的参数分别为,,则,,所以,,所以.【点睛】本题考查了参数方程,极坐标方程,倾斜角,利用直线的参数方程可以简化运算.19、(1)列联表见解析;有99.5%的把握认为平均车速超过与性别有关。(2)4辆【解析】
(1)根据题中数据补充列联表,计算出的观测值,并利用临界值表计算出犯错误的概率,可对题中结论的正误进行判断;(2)记这辆车中驾驶员为男性且车速超过的车辆为,由题意得出,利用二项分布的数学期望公式计算出,即可得出结果.【详解】(1)列联表如下:平均车速超过人数平均车速不超过人数合计男性驾驶员人数女性驾驶员人数合计根据列联表中数据,计算随机变量的观测值,,有的把握认为平均车速超过与性别有关;(2)记这辆车中驾驶员为男性且车速超过的车辆为,根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取辆,驾驶员为男性且车速超过的车辆的频率为,利用频率估计它的概率为.由已知可知服从二项分布,即.所以驾驶员为男性且超过的车辆数的均值(辆).在随机抽取的辆车中平均有辆车中驾驶员为男性且车速超过.【点睛】本题考查列联表,以及独立性检验思想,同时也考查了二项分布数学期望的计算,解题时要弄清楚二项分布的特点,考查分析问题和解决问题的能力,属于中等题.20、(1);(2)【解析】
(1)利用等差数列通项公式和等比数列的性质,列出方程求出,由此能求出的通项公式.(2)由,,求出的表达式,然后转化求解的最小值.【详解】解:(1)是等差数列,,且,,成等比数列.,,解得,.(2)由,,得:,或时,取最小值.【点睛】本题考查数列的通项公式、前项和的最小值的求法,考查等差数列、等比数列的性质等基础知识,考查推理能力与计算能力,属于基础题.21、(1)的图象是中心对称图形,对称中心为:;(2)当或时,有个零点;当时,有个零点【解析】
(1)设,通过奇偶性的定义可求得为奇函数,关于原点对称,从而可得的对称中心,得到结论;(2),可知为一个解,从而将问题转化为解的个数的讨论,即的解的个数;根据的范围,分别讨论不同范围情况下方程解的个数,从而得到零点个数,综合得到结果.【详解】(1)设定义域为:为奇函数,图象关于对称的图象是中心对称图形,对称中心为:(2)令,可知为其中一个解,即为一个零点只需讨论的解的个数即可①当时,无解有且仅有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2031年中国纳米抗菌防脚气袜行业投资前景及策略咨询研究报告
- 2024年药效学研究服务项目项目投资申请报告代可行性研究报告
- 2024版单休劳动合同范本:创新发展劳动合同保障员工合法权益6篇
- 统计分析案例课程设计
- 铣刨机液压系统课程设计
- 蚊子画画课程设计
- 雨巷的课程设计
- 非遗皮影剪纸课程设计
- 飞机数字化课程设计
- 财务评价报告课程设计
- 使用错误评估报告(可用性工程)模版
- 公司章程(二个股东模板)
- GB/T 19889.7-2005声学建筑和建筑构件隔声测量第7部分:楼板撞击声隔声的现场测量
- 世界奥林匹克数学竞赛6年级试题
- 药用植物学-课件
- 文化差异与跨文化交际课件(完整版)
- 国货彩瞳美妆化消费趋势洞察报告
- 云南省就业创业失业登记申请表
- UL_标准(1026)家用电器中文版本
- 国网三个项目部标准化手册(课堂PPT)
- 快速了解陌生行业的方法论及示例PPT课件
评论
0/150
提交评论