版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某农场给某种农作物的施肥量x(单位:吨)与其产量y(单位:吨)的统计数据如表:由于表中的数据,得到回归直线方程为y=9.4x+a.,当施肥量x=6时,该农作物的预报产量是(A.72.0 B.67.7 C.65.5 D.63.62.已知函数与(且)的图象关于直线对称,则“是增函数”的一个充分不必要条件是()A. B. C. D.3.定义在上的奇函数满足,且在上单调递增,则下列结论中正确的是()A.B.C.D.4.如图的三视图表示的四棱锥的体积为,则该四棱锥的最长的棱的长度为()A. B. C.6 D.5.如图所示是求的程序流程图,其中①应为()A. B. C. D.6.设有下面四个命题若,则;若,则;若,则;若,则.其中真命题的个数为()A. B. C. D.7.已知函数fxA.fx的最小正周期为π,最大值为B.fx的最小正周期为π,最大值为C.fx的最小正周期为2πD.fx的最小正周期为2π8.由数字0,1,2,3组成的无重复数字且能被3整除的非一位数的个数为()A.12 B.20 C.30 D.319.已知,,且,若,则()A. B. C. D.10.已知是定义在上的奇函数,对任意,,都有,且对于任意的,都有恒成立,则实数的取值范围是()A. B. C. D.11.设.若函数,的定义域是.则下列说法错误的是()A.若,都是增函数,则函数为增函数B.若,都是减函数,则函数为减函数C.若,都是奇函数,则函数为奇函数D.若,都是偶函数,则函数为偶函数12.根据历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为A.89 B.25 C.9二、填空题:本题共4小题,每小题5分,共20分。13.在正方体ABCD﹣A1B1C1D1,二面角A﹣BD﹣A1的大小为_____.14.设复数满足,则=__________.15.设集合,选择的两个非空子集和,要使中最小的数大于中最大的数,则不同的选择方法共有________种.16.将圆的一组等分点分别涂上红色或蓝色,从任意一点开始,按逆时针方向依次记录个点的颜色,称为该圆的一个“阶色序”,当且仅当两个“阶色序”对应位置上的颜色至少有一个不相同时,称为不同的“阶色序”.若某圆的任意两个“阶色序”均不相同,则称该圆为“阶魅力圆”.“4阶魅力圆”中最多可有的等分点个数为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)若当时,恒成立,求实数的取值范围.(2)设,求证:当时,.18.(12分)已知函数.(1)讨论的单调性;(2)当时,,记函数在上的最大值为,证明:.19.(12分)已知函数,.(1)当时,求的最小值;(2)当时,若存在,使得对任意的恒成立,求的取值范围.20.(12分)某校开设的校本课程分别有人文科学、自然科学、艺术体育三个课程类别,每种课程类别开设课程数及学分设定如下表所示:人文科学类自然科学类艺术体育类课程门数每门课程学分学校要求学生在高中三年内从中选修门课程,假设学生选修每门课程的机会均等.(1)求甲三种类别各选一门概率;(2)设甲所选门课程的学分数为,写出的分布列,并求出的数学期望.21.(12分)有5人进入到一列有7节车厢的地铁中,分别求下列情况的概率(用数字作最终答案):(1)恰好有5节车厢各有一人;(2)恰好有2节不相邻的空车厢;(3)恰好有3节车厢有人.22.(10分)已知函数.(1)求函数在区间上的最大值和最小值;(2)已知,求满足不等式的的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
根据回归直线方程过样本的中心点(x,y),先求出中心点的坐标,然后求出【详解】x=2+3+4+54=3.5,y=26+39+49+544=42,因为回归直线方程过样本的中心点(x【点睛】本题考查了回归直线方程的性质,考查了数学运算能力.2、C【解析】分析:先求出,再利用充分不必要条件的定义得到充分不必要条件.详解:因为函数与(且)的图象关于直线对称,所以.选项A,是“是增函数”的非充分非必要条件,所以是错误的.选项B,是“是增函数”的非充分非必要条件,所以是错误的.选项C,是“是增函数”的充分非必要条件,所以是正确的.选项D,是“是增函数”的充分必要条件,所以是错误的.故答案为C.点睛:(1)本题主要考查充分条件必要条件的判断,意在考查学生对这些知识的掌握水平.(2)已知命题是条件,命题是结论,充分条件:若,则是充分条件.必要条件:若,则是必要条件.3、D【解析】试题分析:由可得:,所以函数的周期,又因为是定义在R上的奇函数,所以,又在上单调递增,所以当时,,因此,,所以。考点:函数的性质。4、C【解析】
根据三视图,画出空间结构体,即可求得最长的棱长。【详解】根据三视图,画出空间结构如下图所示:由图可知,底面,所以棱长最长根据三棱锥体积为可得,解得所以此时所以选C【点睛】本题考查了空间几何体三视图,三棱锥体积的简单应用,属于基础题。5、C【解析】分析:由题意结合流程图的功能确定判断条件即可.详解:由流程图的功能可知当时,判断条件的结果为是,执行循环,当时,判断条件的结果为否,跳出循环,结合选项可知,①应为.本题选择C选项.点睛:本题主要考查流程图的应用,补全流程图的方法等知识,意在考查学生的转化能力和计算求解能力.6、C【解析】分析:对四个命题逐一分析即可.详解:对若,则,故不正确;对若,则,故正确;对若,则,故正确;对若,对称轴为,则,故正确.故选:C.点睛:本题考查了命题真假的判断,是基础题.7、B【解析】
首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为fx=【详解】根据题意有fx所以函数fx的最小正周期为T=且最大值为fxmax=【点睛】该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果.8、D【解析】
分成两位数、三位数、四位数三种情况,利用所有数字之和是的倍数,计算出每种情况下的方法数然后相加,求得所求的方法总数.【详解】两位数:含数字1,2的数有个,或含数字3,0的数有1个.三位数:含数字0,1,2的数有个,含数字1,2,3有个.四位数:有个.所以共有个.故选D.【点睛】本小题主要考查分类加法计数原理,考查一个数能被整除的数字特征,考查简单的排列组合计算,属于基础题.9、B【解析】当时有,所以,得出,由于,所以.故选B.10、B【解析】
由可判断函数为减函数,将变形为,再将函数转化成恒成立问题即可【详解】,又是定义在上的奇函数,为R上减函数,故可变形为,即,根据函数在R上为减函数可得,整理后得,在为减函数,为增函数,所以在为增函数,为减函数在恒成立,即,当时,有最小值所以答案选B【点睛】奇偶性与增减性结合考查函数性质的题型重在根据性质转化函数,学会去“”;本题还涉及恒成立问题,一般通过分离参数,处理函数在某一区间恒成立问题11、C【解析】
根据题意得出,据此依次分析选项,综合即可得出答案.【详解】根据题意可知,,则,据此依次分析选项:对于A选项,若函数、都是增函数,可得图象均为上升,则函数为增函数,A选项正确;对于B选项,若函数、都是减函数,可得它们的图象都是下降的,则函数为减函数,B选项正确;对于C选项,若函数、都是奇函数,则函数不一定是奇函数,如,,可得函数不关于原点对称,C选项错误;对于D选项,若函数、都是偶函数,可得它们的图象都关于轴对称,则函数为偶函数,D选项正确.故选C.【点睛】本题考查分段函数的奇偶性与单调性的判定,解题时要理解题中函数的定义,考查判断这些基本性质时,可以从定义出发来理解,也可以借助图象来理解,考查分析问题的能力,属于难题.12、A【解析】
利用条件概率的计算公式即可得出.【详解】设事件A表示某地四月份吹东风,事件B表示四月份下雨.根据条件概率计算公式可得在吹东风的条件下下雨的概率P(B|A)=8故选:A【点睛】本题主要考查条件概率的计算,正确理解条件概率的意义及其计算公式是解题的关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
连接,交于,连,可得是二面角A﹣BD﹣A1的平面角,在直角三角形中可求得结果.【详解】连接,交于,连,如图所示:因为,且在底面内的射影是,所以由三垂线定理可得,所以是二面角A﹣BD﹣A1的平面角,设正方体的棱长为1,则,,所以,因为,所以.故答案为:.【点睛】本题考查了三垂线定理,考查了求二面角,关键是作出二面角的平面角,属于基础题.14、【解析】
分析:由可得,再利用两个复数代数形式的除法法则化简,结合共轭复数的定义可得结果.详解:满足,,所以,故答案为.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.15、【解析】试题分析:若集合中分别有一个元素,则选法种数有种;若集合中有一个元素,集合中有两个元素,则选法种数有种;若集合中有一个元素,集合中有三个元素,则选法种数有种;若集合中有一个元素,集合中有四个元素,则选法种数有种;若集合中有两个元素,集合中有一个元素,则选法种数有种;若集合中有两个元素,集合中有两个元素,则选法种数有种;若集合中有两个元素,集合中有三个元素,则选法种数有种;若集合中有三个元素,集合中有一个元素,则选法种数有种;若集合中有三个元素,集合中有两个元素,则选法种数有种;若集合中有四个元素,集合中有一个元素,则选法种数有种;总计有种.故答案应填:.考点:组合及组合数公式.【方法点睛】解法二:集合中没有相同的元素,且都不是空集,从个元素中选出个元素,有种选法,小的给集合,大的给集合;从个元素中选出个元素,有种选法,再分成两组,较小元素的一组给集合,较大元素的一组给集合,共有种方法;从个元素中选出个元素,有种选法,再分成两组,较小元素的一组给集合,较大元素的一组给集合,共有种方法;从个元素中选出个元素,有种选法,再分成两组,较小元素的一组给集合,较大元素的一组给集合,共有种方法;总计为种方法.根据题意,中最小的数大于中最大的数,则集合中没有相同的元素,且都不是空集,按中元素数目这和的情况,分种情况讨论,分别计算其选法种数,进而相加可得答案.本题考查组合数公式的运用,注意组合与排列的不同,进而区别运用,考查分类讨论的数学思想,属于压轴题.16、1【解析】分析:由题意可得,“4阶色序”中,每个点的颜色有两种选择,故“4阶色序”共有2×2×2×2=1种,从两个方面进行了论证,即可得到答案.详解:“4阶色序”中,每个点的颜色有两种选择,故“4阶色序”共有2×2×2×2=1种,一方面,n个点可以构成n个“4阶色序”,故“4阶魅力圆”中的等分点的个数不多于1个;另一方面,若n=1,则必需包含全部共1个“4阶色序”,不妨从(红,红,红,红)开始按逆时针方向确定其它各点颜色,显然“红,红,红,红,蓝,蓝,蓝,蓝,红,蓝,蓝,红,红,蓝,红,蓝”符合条件.故“4阶魅力圆”中最多可有1个等分点.故答案为:1.点睛:本题主要考查合情推理的问题,解题的关键分清题目所包含的条件,读懂已知条件.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析【解析】
(1)解法一:求得函数导数并通分,对分成两种情况,结合函数的单调性、最值,求得实数的取值范围.解法二:将原不等式分离常数,得到,构造函数,利用导数结合洛必达法则,求得的取值范围,由此求得的取值范围.(2)解法一:先由(1)的结论,证得当时成立.再利用导数证得当时,也成立,由此证得不等式成立.解法二:将所要证明的不等式等价转化为,构造函数,利用导数证得,进而证得,也即证得.【详解】解:(1)【解法一】由得:①当时,由知,在区间上为增函数,当时,恒成立,所以当时,满足题意;②当时,在区间上是减函数,在区间上是增函数.这时当时,,令,则即在上为减函数,所以即在上的最小值,此时,当时,不可能恒成立,即有不满足题意.综上可知,当,使恒成立时,的取值范围是.【解法二】当时,等价于令,则只须使设在上为增函数,所以在上为增函数,当时,由洛必达法则知即当时,,所以有即当,使恒成立时,则的取值范围是(2)解法一:由(1)知,当时,当时,又成立故只须在证明,当时,即可当时,又当时,所以,只须证明即可;设由得:当,时当时,即在区间上为增函数,在区间上为减函数,当时,成立综上可知,当时,成立.(2)解法二:由(1)知当时,等价于设由得:当时,;当时,即在区间上为增函数,在区间上为减函数,当时,因为时,.所以所以成立.综上可知,当时,成立.【点睛】本小题主要考查利用导数研究不等式恒成立问题,考查利用导数证明不等式,考查分类讨论的数学思想,考查化归与转化的数学思想方法,难度较大,属于难题.18、(1)单调递减区间为,单调递增区间为;(2)见解析.【解析】
(1)利用导数求函数的单调性即可;(2)对求导,得,因为,所以,令,求导得在上单调递增,,使得,进而得在上单调递增,在上单调递减;所以,令,求导得在上单调递增,进而求得m的范围.【详解】(1)因为,所以,当时,;当时,,故的单调递减区间为,单调递增区间为.(2)当时,,则,当时,,令,则,所以在上单调递增,因为,,所以存在,使得,即,即.故当时,,此时;当时,,此时.即在上单调递增,在上单调递减.则.令,,则.所以在上单调递增,所以,.故成立.【点睛】本题考查了利用导数求函数的单调性和取值范围,也考查了构造新函数,转化思想,属于中档题.19、(1)见解析;(2)【解析】
(1)求出f(x)的定义域,求导数f′(x),得其极值点,按照极值点a在[1,e2]的左侧、内部、右侧三种情况进行讨论,可得其最小值;(2)存在x1∈[e,e2],使得对任意的x2∈[﹣2,0],f(x1)<g(x2)恒成立,即f(x)min<g(x)min,由(1)知f(x)在[e,e2]上递增,可得f(x)min,利用导数可判断g(x)在[﹣2,0]上的单调性,可得g(x)min,由f(x)min<g(x)min,可求得a的范围;【详解】(1)f(x)的定义域为(0,+∞),f′(x)(a∈R),当a≤1时,x∈[1,e2],f′(x)≥0,f(x)为增函数,所以f(x)min=f(1)=1﹣a;当1<a<e2时,x∈[1,a],f′(x)≤0,f(x)为减函数,x∈[a,e2],f′(x)≥0,f(x)为增函数,所以f(x)min=f(a)=a﹣(a+1)lna﹣1;当a≥e2时,x∈[1,e2],f′(x)≤0,f(x)为减函数,所以f(x)min=f(e2)=e2﹣2(a+1);综上,当a≤1时,f(x)min=1﹣a;当1<a<e2时,f(x)min=a﹣(a+1)lna﹣1;当a≥e2时,f(x)min=e2﹣2(a+1);(2)存在x1∈[e,e2],使得对任意的x2∈[﹣2,0],f(x1)<g(x2)恒成立,即f(x)min<g(x)min,当a<1时,由(1)可知,x∈[e,e2],f(x)为增函数,∴f(x1)min=f(e)=e﹣(a+1)g′(x)=x+ex﹣xex﹣ex=x(1﹣ex),当x∈[﹣2,0]时g′(x)≤0,g(x)为减函数,g(x)min=g(0)=1,∴e﹣(a+1)1,a,∴a∈(,1).【点睛】本题考查利用导数研究函数的单调性及求闭区间上函数的最值,考查分类讨论思想,考查了分析解决问题的能力,将恒成立问题转化为函数的最值是常用方法,属于较难题.20、(1)(2)见解析【解析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025合同纠纷民事起诉书
- 2024年度四川省公共营养师之四级营养师题库练习试卷B卷附答案
- 2024年度四川省公共营养师之三级营养师考前练习题及答案
- 2025年中国咖啡厅连锁市场运行动态及行业投资潜力预测报告
- 2025锦豪雅苑木工劳务合同
- 2024-2025年中国信用评级服务行业市场前景预测及投资战略咨询报告
- 中国服装面料行业市场深度调查评估及投资方向研究报告
- 外衣花边面料行业市场发展及发展趋势与投资战略研究报告
- 中国多利卡液罐车油罐车项目投资可行性研究报告
- 2024-2030年中国核素药物行业市场调查研究及投资前景展望报告
- 《理想信念教育》课件
- 2023年高级EHS工程师年度总结及下年工作展望
- 《城市规划原理试题》(附答案)
- 110kV升压站构支架组立施工方案
- 钢构件应力超声检测技术规程
- -《多轴数控加工及工艺》(第二版)教案
- 体 育 课 教 学 评 价 量 表
- 23秋国家开放大学《汉语国际教育概论》阶段测验1-2+教学活动1参考答案
- 新员工信息安全课件培训
- 小学英语-Unit3What would you likePartB Let's talk教学设计学情分析教材分析课后反思
- OA系统功能说明书
评论
0/150
提交评论