九种常用缺失值插补方法的比较_第1页
九种常用缺失值插补方法的比较_第2页
九种常用缺失值插补方法的比较_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

九种常用缺失值插补方法的比较数据集中缺失值的存在是一个常见但难于处理的问题,它会增大统计分析的复杂性和难度,导致分析结果的偏倚,降低统计工作的效率。虽然事前预防是避免缺失值最简单有效的方法,但是由于种种常规原因和现实条件,事前预防并不能完善地解决问题。因此,对缺失值的事后处理显得尤为重要,也越来越受到研究者们的高度重视。常见的缺失值的处理方法主要有直接删除法和数据插补法两种,鉴于直接删除法会导致数据信息的再次损失,所以本文主要从数据插补方面入手,先对统计学中常用的九种缺失值的插补方法——均值插补、随机插补、回归插补、多重插补、最近邻插补、决策树插补、支持向量机插补和神经网络插补等方法的插补原理作了介绍接着按数据量从小到大的顺序选取个数据集 、和以 的样本量缺失率在中按单个变量随机缺失和多个变量随机缺失两种模式生成相应的缺失数据集(这里随机缺失的含义是将其中随机抽取的10的%数据替换为缺失值),然后用上述九种插补方法对两种缺失模式的数据集进行插补。为评价和比较各种插补方法的插补效果,本文从两方面进行比较:(1从数据插补误差的角度,把单个变量缺失模式下的3个数据集的九种插补方法生成的诸插补值与对应的数据真值(随机缺失前)进行比较,计算对应的平均绝对误差和均方误差 按这两个指标的大小评价比较这九种插补方法的优劣。(2从)模型的角度,用缺失前的完整数据集和先缺失再插补后的诸数据集各自建立多元线性回归模型,估计相应的回归系数(向量),计算出相应的判定系数,再进行比较和评价。最后指出了各插补方法的特点和异同,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论