版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人工智能教学实训第一章发展背景当今,世界无时无刻不在发生着变化。对于技术领域而言,普遍存在的一个巨大变化就是为大数据(Bigdata)打开了大门。随着国家大数据战略推进实施以及配套政策的贯彻落实,大数据产业发展环境进一步优化,社会经济各领域对大数据服务需求进一步增强,大数据的新技术、新业态、新模式不断涌现,产业规模持续保持高速增长态势。并且,随着高校获准开设“数据科学与大数据技术”专业,大数据需要的复合型人才将源源不断形成。加之海外和传统行业跨界人才不断加入大数据行业,大数据产业将迎来创新发展。大数据时代的来临加快了人工智能应用的发展,随着大数据的应用,以及计算机算力的大幅提升,深度学习进一步提升和完善的需要得到了满足,数据驱动的人工智能时代已经到来,人工智能发展进入新阶段。当前,新一代人工智能相关学科发展、理论建模、技术创新、软硬件升级等整体推进,正在引发链式突破,推动经济社会各领域从数字化、网络化向智能化加速跃升,数据科学与人工智能的结合越来越紧密。大数据及人工智能成为国际竞争的新焦点,是引领未来的战略性技术,世界主要发达国家把大数据、人工智能的发展作为提升国家竞争力、维护国家安全的重大战略,加紧出台规划和政策,围绕核心技术、顶尖人才、标准规范等强化部署,力图在新一轮国际科技竞争中掌握主导权。当前,我国国家安全和国际竞争形势更加复杂,必须放眼全球,把大数据及人工智能发展放在国家战略层面系统布局、主动谋划,牢牢把握新阶段大数据及人工智能国际竞争的战略主动,打造竞争新优势、开拓发展新空间,有效保障国家安全。第二章方案平台优势2.1.方案优势基于云模式的智慧教育人工智能教学实训平台的设计全面落实“产、学、用、监、评”一体化的思想和模式,从教学、实践、使用、监控、评估等多方面注重专业人才和特色人才的培养。学生可以通过在教学平台的学习熟练掌握人工智能的基础知识,通过掌握的知识在人工智能课程实验中进行动手实践。本实训系统平台方案融合操作系统、数据库、编程语言、Python数据处理、人工智能等课程,人工智能领域涉及深度学习、机器学习、深度学习、自然语言处理、计算机视觉等诸多方面,课程类型包括基础实训、关键技术掌握、应用创新等等各层次实践教学。从面向人工智能行业的需求、促进学生职业发展的角度,规划建设基于云模式的人工智能教学实训平台,真正在产业、学校及实际项目中相互配合,发挥优势,形成生产、学习、实践、运用、监控、评估的系统运作模式,从而建设大数据及人工智能特色专业。利用虚拟化教学资源,搭建实训实战平台,将理论学习、实践教学和大数据及人工智能搭建、挖掘、存储、分析实战融为一体,从易到难、循序渐进,逐步提升学生的学习技能和实践水平,提高“学”的质量和成效。定制专业化技能评估与教学监控功能,将学生的学习情况、专业喜好、适用岗位形成报告模版。秉承着“精准、先进、创新”的原则,实时监控学生操作,分析学习情况,评估学生知识水平,从而减轻学校及教师的压力。2.2.系统优势人工智能教学实训平台基于开源的Docker环境,构建硬件虚拟化设备,并基于同样开源的Kubernetes架构,实现GPU集群设备的自动管理和调度,以Yarn为核心,构建了资源管理系统,实现计算任务的智能调度与冲突协调。一个基础平台的生命力,有赖于系统的基础支撑能力与对外服务能力。在面向人工智能计算需求的建设开发上,必须要考虑如何开发组织系统对外服务的能力。而人工智能研发需求的两个基本要素就是计算和数据。因此,本系统也着眼于组建基础计算能力和基础数据处理能力。在计算能力建设中,系统将传统人工智能计算方法与计算模型、当前流行的人工智能计算模型与框架,完美地融入了整个系统的计算模块中,并且与底层的硬件管理与计算资源的调度,完美地结合在一起。在数据能力的建设中,系统将自建一套以非结构化数据的标记清洗,结构化数据的清洗为主要内容的数据处理系统。在系统底层硬件管理上,支持CPU、GPU、FPGA、ASIC等通用或专用计算硬件,实现对主流计算硬件的即插即用。在计算集群的设置上,往往也是分布式的,计算集群可以分布在不同机房中,不受空间限制,是人工智能教学实训平台在底层硬件管理上的特点。在系统最核心的调度算法上,通过系统自身构建的智能化调度策略,针对不同的计算框架和机器学习方法,系统自动分配相应的计算资源,包括处理器数量、内存数量,使计算请求与计算资源的使用达到最优匹配,提高计算资源的利用效率,降低单位时间的运行成本。同时,当用户发起计算请求时,系统会根据用户距离计算中心的“距离”,自动将用户的请求适配到距离用户最近的计算集群上,以便用户可以更快速地获取计算结果,提升用户的计算体验。在教学管理方面,平台自带人工智能课程推荐功能,可为学生提供个性化课程推荐及AI课程助手,助力学生定向就业。还可以通过大数据分析,自动生成学业报告,为学生就业提供桥梁,并作为教师教学的得力助手,为高校的学生能力培养及教师的工作提供强有力的支持。第三章教学实训平台人工智能教学实训平台的建设采用B/S架构,用户通过浏览器进行访问,且支持内网与外网同时访问。平台的管理功能是针对前端系统设置的对应的管理功能,便于教学过程中对前端系统的自定义管理。系统课程学习模式包括实验平台、项目路径和职业路径,满足不同场景的教学需求。在教学管理方面,平台自带人工智能课程推荐功能,可为学生提供个性化课程推荐及AI课程助手,助力学生定向就业。还可以通过大数据分析,自动生成学业报告,为学生就业提供桥梁,并作为教师教学的得力助手,为高校的学生能力培养及教师的工作提供强有力的支持。实训平台采用私有云模式,所有课程均在云端进行,自主研发设计的教学平台可将硬件资源进行集中调度分配,可管理大规模CPU、GPU、FPGA等高性能分布式计算集群,利用容器技术对计算资源进行虚拟化,以智能调度的方式对外提供计算服务,并依托开源分布式计算框架和深度学习框架,支持训练、推理,支持CNN、RNN等各种类型的网络模型,支持Xgboost等传统机器学习模型,适合大数据、人工智能、深度计算;课程内容涵盖操作系统、编程语言、Python数据处理、机器学习、数据分析、数据挖掘、深度学习、计算机视觉、自然语言处理等诸多方面,课程类型包括基础实训、关键技术掌握、应用创新等,是一个综合性的学习研究平台;平台配合专用的资源监控系统、课程监控系统,可实时的监控整个平台的硬件资源负载以及学生学习的状态,可帮助教师合理的安排课程及对应资源。3.1.学习模式3.1.1.实验平台该模式以知识体系为核心,将人工智能内容按照不同类型的知识模块进行分类。体系下包含了:操作系统、编程语言、Python数据处理、机器学习、数据分析、数据挖掘、深度学习、计算机视觉、自然语言处理等诸多方面,该模式围绕一个内容展开了多方面知识的学习,与现在教育方式一致,保留了师生们传统的学习授课方法。不仅如此,为满足学校的已有的课程教学资源,老师可以自定义实验内容及实验镜像,将文本类、实操类、视频类课程上传到教学平台上满足教学需求。实验平台3.2.练习算法3.2.1.算法集算法集提供了一个环境,用户可以在里面写代码、运行代码、查看结果,并在其中可视化数据,并与平台中的数据集功能进行交互式使用,可直接调用平台当中的数据集用于算法在实际数据中的实践测试。鉴于这些优点,它能帮助他们便捷地执行各种端到端任务,如数据清洗、统计建模、构建/训练机器学习模型等。算法集的一个特色是允许把代码写入独立的cell中,然后单独执行。这样做意味着用户可以在测试项目时单独测试特定代码块,无需从头开始执行代码。虽然其他的IDE环境(如RStudio)也提供了这种功能,但就个人使用情况来看,算法集的单元结构是设计的最好的。算法集的优势还体现在灵活性和交互性上,除了最基础的Python,它还允许用户在上面运行R语言。由于它比IDE平台更具交互性,教师也更乐于在各种教程中用它来展示代码。3.2.2.数据集数据集功能提供数量众多的数据集,包括互联网、零售、电商、医疗等相关数据集,数据集中的数据可直接与算法集中的算法进行交互使用,为算法提供所需数据的调用支撑。教师可根据数据集的内容、格式、数量等为学生设定开放式课题,使用真实的数据集进行大数据、人工智能项目案例处理分析,深度理解掌握如何处理这些数据,例如,教师给定一份数据让学生进行预测实验,学生需设计算法进行清洗与预测等。平台提供开放式上传功能,支持用户将自己的数据上传至平台当中,并可设定是否与他人共用,可帮助用户解决数据存放管理问题,实现用户数据的开放式共享。3.3.在线考试3.3.1.理论考核理论考核采用在线考核模式,将单选题、多选题、判断题、填空题、简答题添加在试卷上,每一道题的题目、正选、分值等内容可由管理员自行设置,简答题题采用关键词进行自动判分,同时也可以由教师手动判分。理论考核3.3.2.实践测评实践测评考核模式是以实验操作过程为考核点,也称之为实操题考核模式,由教师在管理端设置考核步骤、分值权重,平台提供配套的实验考试环境。学生在实际操作过程中遇到的考核点,需要根据实际结果去填写,到最后统一汇总分数。该模式突破了传统的考核模式,通过实操的方式来加深印象,巩固知识。实践测评3.4.智能教务3.4.1.教学进度分析课程实验具有核全局开关功能,打开全局考核后,进行所有实验时都必须完成实验当中设定的每一步考核才能查看下一步。接着,系统不仅自动检测到正在进行实验,也可以手动设定实验状态分析(也可以手动设置分析目标)。查看分析结果时可查看每个班级的学生在进行每个实验时完成度,查看每个实验的每个步骤的通过率、完成率、完成进度、实验总结信息等。教学进度分析功能可通过智能化的手段,有效帮助教师分析并掌握整个班级的学习情况,根据学生完成实验的进度过程进行授课,选择重点难点部分进行针对性讲解,有效降低教师授课压力,高效完成授课任务。教学分析3.4.2.教学计划管理管理员在后台可以一次性布置全部的教学计划,规定上课时间与学习课程,随后学生通过在前端查看,即可了解到每一天的课程安排。3.4.3.实验报告管理教师通过此功能查看学生的实验报告,支持预览和批阅等功能,后台自动统计学生学习数据,展示出每个步骤的学习通过时间、成绩正确率、班级排名等信息,并将实验数据与学生的实验报告有机结合,形成完成的实验报告。此功能相较于传统的实验报告,增加了学生的学习数据统计功能,可大大的减轻教师的负担,同时为教师了解班级整体的学习状况提供的有力的支持。3.5.平台管理3.5.1.用户管理为满足教师方便的管理班级学院,平台提供用户组织管理功能。其中用户管理显示平台用户的信息列表,管理端可对平台用户信息进行编辑与删除,包含根据组织、专业、班级、姓名等信息进行用户模糊筛选,便于管理平台用户;角色管理显示平台现有角色,用户可编辑新的角色并赋予角色权限;组织结构管理显示平台现有的组织机构,管理端可以也可根据层级分步添加组织、学院、系别、专业、班级,对同级别下的机构进行排序。3.5.2.资源管理用户可以在此查看版本信息、用户数量、实验数量,资源监控及用户虚拟机监控。同时后台资源监控中心可查看平台的用户
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度山西省高校教师资格证之高等教育法规真题练习试卷B卷附答案
- 2024年大、中容量数字程控交换机项目资金需求报告代可行性研究报告
- 2024年机械治疗及病房护理设备项目资金申请报告代可行性研究报告
- 幼儿园校舍安全排查自查报告范文
- 2024年产品保修服务协议文本
- 2024年专用液化气运输服务协议范本
- 2024年建筑效果设计方案协议模板
- 2024年二手车销售协议:全面细化
- 仓库租赁与承包协议范本2024年适用
- 出口业务协议样式2024年专业
- 储槽基础施工方案#吉林
- Alices--adventures-in-wonderland爱丽丝梦游仙境PPT课件
- 2021年四史学习教育PPT
- 财务共享服务中心在企业中的应用分析——以国美电器集团为例[精选]
- 幼儿园大班数学练习题(直接打印版)
- 民警三个规定自查自纠报告6篇范文
- 成立纪检监察领导小组3篇
- 查询深沟球轴承尺寸和公差
- 关于柜面操作关键环节的风险提示
- 抽油杆设计方法
- 工程送审结算模板(经典实用)
评论
0/150
提交评论