版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南通市启东江海中学高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.抛物线的准线方程为(
)
参考答案:B2.某班级在一次数学竞赛中为全班同学设置了一等奖、二等奖、三等奖以及参与奖,且奖品的单价分别为:一等奖20元、二等奖10元、三等奖5元、参与奖2元,获奖人数的分配情况如图所示,则以下说法正确的是(
)A.参与奖总费用最高 B.三等奖的总费用是二等奖总费用的2倍C.购买奖品的费用的平均数为9.25元 D.购买奖品的费用的中位数为2元参考答案:D【分析】先计算参与奖的百分比,分别计算各个奖励的数学期望,中位数,逐一判断每个选项得到答案.【详解】参与奖的百分比为:设人数为单位1一等奖费用:二等奖费用:三等奖费用:参与奖费用:购买奖品的费用的平均数为:参与奖的百分比为,故购买奖品的费用的中位数为2元故答案选D【点睛】本题考查了平均值,中位数的计算,意在考查学生的应用能力.3.过直线上的一点作圆的两条切线,,当直线,关于对称时,它们之间的夹角为(
).A. B. C. D.参考答案:C设过直线上一点作圆切线,圆心.∵直线,关于对称,∴直线与垂直,点到直线的距离,又∵圆的半径为,,与直线的夹角均为,∴与夹角为.故选.4.当在上变化时,导函数的符号变化如下表:1(1,4)4-0+0-则函数的图象的大致形状为()
参考答案:C略5.过椭圆+=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若∠F1PF2=60°,则椭圆的离心率为()A. B. C. D.参考答案:B【考点】椭圆的简单性质.【分析】把x=﹣c代入椭圆方程求得P的坐标,进而根据∠F1PF2=60°推断出=整理得e2+2e﹣=0,进而求得椭圆的离心率e.【解答】解:由题意知点P的坐标为(﹣c,)或(﹣c,﹣),∵∠F1PF2=60°,∴=,即2ac=b2=(a2﹣c2).∴e2+2e﹣=0,∴e=或e=﹣(舍去).故选B.6.点P在直线m上,m在平面a内可表示为()A.P∈m,m∈a B.P∈m,m?a C.P?m,m∈a D.P?m,m?a参考答案:B【考点】LJ:平面的基本性质及推论.【分析】根据点与线面的关系是∈和?的关系,线与面是?与?的关系,即可得到答案【解答】解:∵点P在直线m上,m在平面a内,∴P∈m,m?a,故选:B7.过坐标原点且与点(,1)的距离都等于1的两条直线的夹角为() A.90° B.45° C.30° D.60°参考答案:D【考点】点到直线的距离公式. 【专题】计算题;转化思想;综合法;直线与圆. 【分析】设所求直线方程为kx﹣y=0,利用点到直线距离公式求出k=0或k=,由此能求出这两条直线的夹角. 【解答】解:当所求直线的斜率不存在时,直线方程为x=0,点(,1)的距离都等于,不成立; 当所求直线的斜率k存在时,设所求直线方程为y=kx,即kx﹣y=0, ∵所求直线与点(,1)的距离等于1, ∴=1,解得k=0或k=, ∴这两条直线的夹角为60°. 故选:D. 【点评】本题考查两直线夹角的求法,是基础题,解题时要认真审题,注意点到直线距离公式的合理运用. 8.函数y=xcosx+sinx的图象大致为()A. B. C. D.参考答案:D【考点】函数的图象.【分析】给出的函数是奇函数,奇函数图象关于原点中心对称,由此排除B,然后利用区特值排除A和C,则答案可求.【解答】解:由于函数y=xcosx+sinx为奇函数,故它的图象关于原点对称,所以排除选项B,由当x=时,y=1>0,当x=π时,y=π×cosπ+sinπ=﹣π<0.由此可排除选项A和选项C.故正确的选项为D.故选:D.9.在100和500之间能被9整除的所有数之和为(
)A.12699
B.13266
C.13833
D.14400参考答案:B略10.某铁路所有车站共发行132种普通客票,则这段铁路共有车站数是(
)A.8 B.12 C.16 D.24参考答案:B设共有n个车站,在n个车站中,每个车站之间都有2种车票,相当于从n个元素中拿出2个进行排列,共有,n=12,故选B.二、填空题:本大题共7小题,每小题4分,共28分11.己知f(x)为定义域为R内的减函数,且,则实数a的取值范围为
.参考答案:12.若,则的值为
.参考答案:413.曲线在点(1,1)处的切线方程为
.参考答案:14.已知复数z满足,则的最小值是______.参考答案:3【分析】根据绝对值不等式,求出的最小值即可.【详解】∵复数满足,∴,∴的最小值是.故答案为3.【点睛】本题主要考查了不等式的应用问题,也考查了复数的运算问题,是基础题目.15.已知圆锥侧面展开图为中心角为135°的扇形,其面积为B,圆锥的全面积为A,则A:B为__________.参考答案:圆锥底面弧长,∴,即,,,∴,.16.已知f1(x)=sinx+cosx,fn+1(x)是fn(x)的导函数,即f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1(x)=fn′(x),n∈N*,则f2014(x)=________.参考答案:cosx-sinx17.已知集合,若对于任意,存在,使得成立,则称集合是“集合”.给出下列4个集合:①
②
③
④其中所有“集合”的序号是
.(将所有符合条件的序号都填上,少填得3分,多填得0分)参考答案:②③三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)已知等差数列{an}的前n项和为Sn,且a3=5,S15=225.(1)求数列{an}的通项公式;(2)设bn=2an+2n,求数列{bn}的前n项和Tn.参考答案:略19.正方形的边长为1,分别取边的中点,连结,以为折痕,折叠这个正方形,使点重合于一点,得到一个四面体,如下图所示。
(1)求证:;(2)求证:平面。参考答案:证明:(1)由是正方形,所以在原图中
折叠后有…………2分
所以
所以…………7分(2).由原图可知,
所以…………10分
又
,所以…………14分略20.参考答案:21.2015年10月十八届五中全会决定2016年1月1日起全国统一实施全面两孩政策,为了了解适龄民众对放开生育二胎政策的态度,某市进行了一次民意调查,参与调查的100位市民中,年龄分布情况如图所示,并得到适龄民众对放开生育二胎政策的态度数据如表:
生二胎不生二胎合计25~35岁45105535~50岁301545合计7525100(1)填写上面的2×2列联表;(2)根据调查数据,有多少的把握认为“生二胎与年龄有关”,说明理由;(3)调查对象中决定生二胎的民众有六人分别来自三个不同的家庭且为父子,各自家庭都有一个约定:父亲先生二胎,然后儿子生二胎,则这个三个家庭“二胎出生的日期的先后顺序”有多少种?参考数据:P(K2>k)0.150.100.050.010k2.0722.0763.8416.635(参考公式:K2=,其中n=a+b+c+d)参考答案:【考点】独立性检验的应用.【分析】(1)根据题意,填写2×2列联表即可;(2)根据调查数据计算K2,对照数表即可得出结论;(3)分别计算三对父子的二胎出生日期仅为不同的二天、不同的三天、不同的四天、不同的五天和不同的六天时的种数,求和即可.【解答】解:(1)根据题意,填写2×2列联表,如下:
生二胎不生二胎合计25~35岁45105535~50岁301545合计7525100(2)根据调查数据,计算K2===≈3.030>2.706,(7分)所以有90%以上的把握认为“生二胎与年龄有关”;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)(3)三对父子的二胎出生日期仅为不同的二天,则有1种;三对父子的二胎出生日期仅为不同的三天,则有﹣=24种;﹣﹣﹣﹣﹣﹣﹣﹣(9分)三对父子的二胎出生日期仅为不同的四天,则有﹣×24﹣×1=114种;(10分)三对父子的二胎出生日期仅为不同的五天,则有﹣×114﹣×24﹣×1=180种;﹣﹣﹣﹣﹣﹣﹣﹣(11分)三对父子的二胎出生日期仅为不同的六天,则有﹣×180﹣×114﹣×24﹣×1=90或=90种.故共计有1+2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第19课 科学技术的重大成果课件
- 2024年专业电工施工协议典范
- 中国特色社会主义基本原理(上)
- 2024年度层电梯厅装潢协议模板
- 2024年无薪实习劳动协议
- 2024年仓库租赁法律协议细则
- 2024年型车辆采购协议
- 2024届安徽省合肥高升学校高三八校第一次适应性考试数学试题试卷
- 2024建筑业劳务施工协议文本
- 2023-2024学年浙江省温州市九校下期第二次质量考评(3月)高三数学试题
- 社科类课题申报工作辅导报告课件
- 2023-2024学年广东省广州市小学语文六年级期末高分试卷详细参考答案解析
- 比尾巴(全国一等奖)
- 如何做好船舶成本管理
- 沙利文-内窥镜行业现状与发展趋势蓝皮书
- 比亚迪e6说明书
- 渠道管理PPT(第3版)完整全套教学课件
- 《新时代劳动教育》-02新时代劳动价值观课件
- 2023年口腔医学期末复习-牙周病学(口腔医学)考试历年真题荟萃带答案
- 【典型案例】长江流域浙江的历史发展:人民群众是社会物质财富的创造者
- 完整版平安基础性向测试智商测试题及问题详解
评论
0/150
提交评论